

FUTURE **TECHNOLOGIES SYMPOSIUM**

OCP Global Summit

November 8, 2021 | San Jose, CA

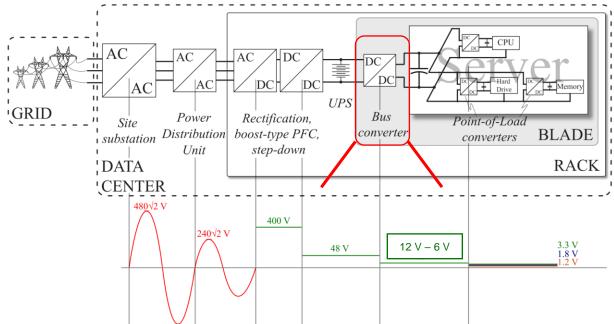
Hybrid and Resonant Switched-Capacitor Converters:

Achieving Ultra-Efficient and Compact 48 V Datacenter Power Delivery

Ting Ge, Rose Abramson, Zichao Ye, Robert Pilawa-Podgurski EECS UC Berkeley

Background and Motivation

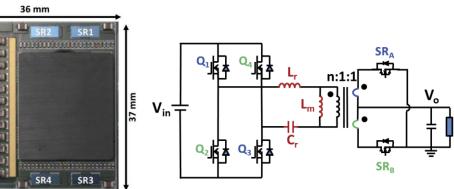
48-to-12 V Cascaded Multi-Resonant Converter


48-to-6 V Cascaded Series-Parallel Converter

Conclusion

Data Center Power Delivery System

• Focus of this work: Intermediate Bus Converter



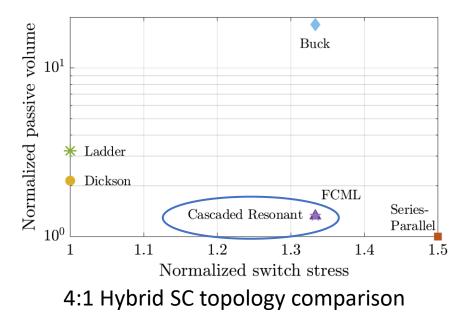
E. Candan, "Improving Data Center Power Delivery Efficiency with Differential Power Processing and Multi-level Power Converters", PhD dissertation, University of Illinois, 2018.

Transformer-based Solutions

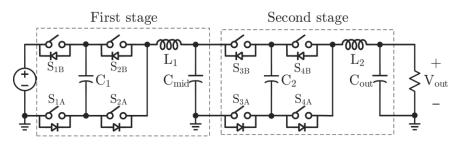
• High current capability and high power density

LLC from CPES: 75 A, 98.4% peak eff. and 1600 W/in³ [1]

Highly integrated Vicor design: 60 A, 98.0% peak eff. and 4022 W/in³ [2]


[1] M. H. Ahmed, F. C. Lee, Q. Li, M. de Rooij, and D. Reusch, "Gan based high-density unregulated 48 v to x v llc converters with 98% efficiency for future data centers," in *PCIM Europe 2019*, pp. 1–8.

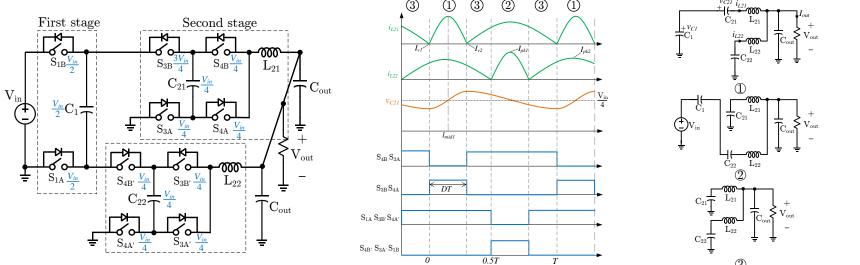
[2] Vicor Inc., NBM Non-isolated Bus Converter Module Data Sheet, 2020.



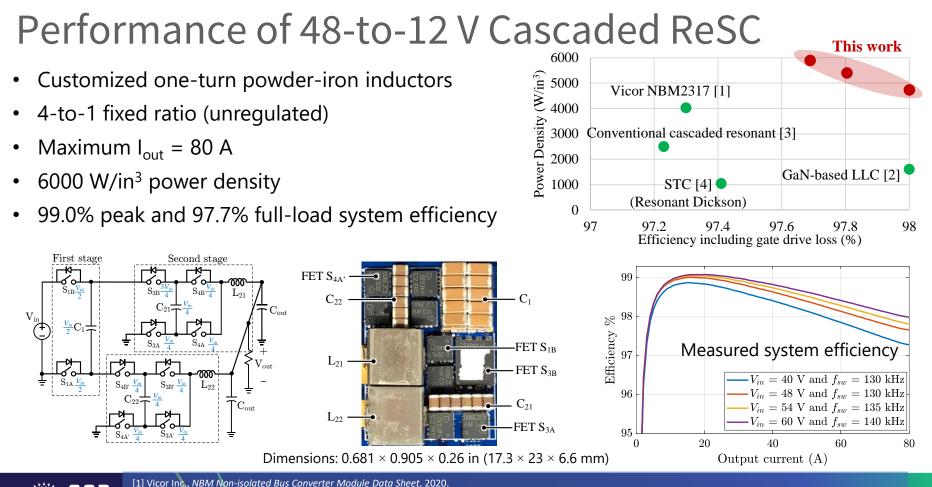
Hybrid Switched-Capacitor Solutions

• Significantly reduced magnetic size

Cascaded resonant converter with good balance of active & passive component utilizations


99.0% peak eff. and 2500 W/in³

Z. Ye, Y. Lei, and R. C. N. Pilawa-Podgurski, "The cascaded resonant converter: A hybrid switched-capacitor topology with high power density and efficiency," *IEEE Transactions on Power Electronics*, vol. 35, no. 5, pp. 4946–4958, 2020.


Cascaded Multi-Resonant Converter

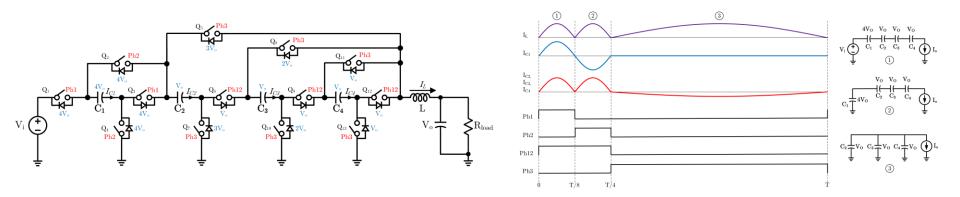
- 2^{nd} stage uses two phases for higher power and small $\mathrm{C}_{\mathrm{mid}}$
- 1st stage uses only two switches to realize 2:1 step down ratio and shares resonant inductors with the 2nd stage

T. Ge, et. al., "A 48-to-12 V Cascaded Multi-Resonant Switched-Capacitor Converter Achieving 4700 W/in³ Power Density and 98.9% Peak Efficiency," 2021 ECCE.

[2] M. H. Ahmed, et. al., "Gan based high-density unregulated 48 v to x v llc converters with 98% efficiency for future data centers," in *PCIM Europe 2019*, pp. 1–8.
[3] Z. Ye, et. al., "The cascaded resonant converter: A hybrid switched-capacitor topology with high power density and efficiency," IEEE Transactions on Power Electronics, 2020.
[4] S. Jiang, C. Nan, X. Li, C. Chung, and M. Yazdani, "Switched tank converters," in 2018 IEEE APEC.

Lower Intermediate Bus Voltage

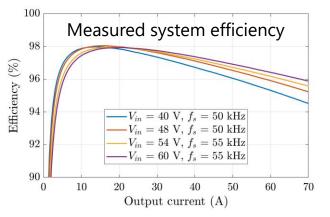
- Lower intermediate bus voltage for better overall efficiency
- In need of high performance bus converters with higher conversion ratio

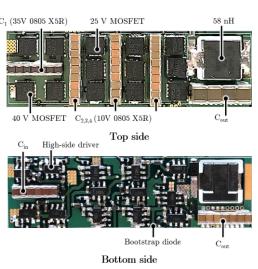

Vin (V)	Eff (%)	Manufacturer	Part Number	Frequency
5	94.0	ΤI	TPS543C20	500 kHz
5	93.5	ΤI	TPS543C20	500 kHz
8	91.2	Murata	MYMGK00504ERSR	250 kHz
10	89.2	ΤI	PMP20023 TPS544C25	386 kHz
12	88.5	ΤI	PMP20023 TPS544C25	386 kHz
12	89.0	CUI	NDM2Z-25	320 kHz
12	89.2	Murata	MYMGK00504ERSR	250 kHz
12	89.9	EPC	EPC9059	1000 kHz

A. Lidow, "Powering graphics processors from a 48-V bus," 2019.

Multi-Resonant Cascaded Series-Parallel (CaSP) Converter

- 2-to-1 series-mode cascaded with 4-to-1 parallel-mode step-down
- Multiple operating phases \rightarrow reduced component count
- Operated above resonance for soft charging and reduced conduction loss




R. Abramson, et. al., "A High Performance 48-to-6 V Multi-Resonant Cascaded Series-Parallel (CaSP) Switched-Capacitor Converter," 2021 APEC.

Performance of 48-to-6 V CaSP Converter

- 8-to-1 fixed ratio (unregulated)
- 2140 W/in³ power density
- 98.1% peak and 95.3% full-load system efficiency
- Maximum I_{out} = 70 A

2500

2000

1500

1000

500

0

92

93

This work

EPC LLC [3]

97

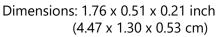
98

96

8-to-1 MRD [1]

95

Efficiency(%)

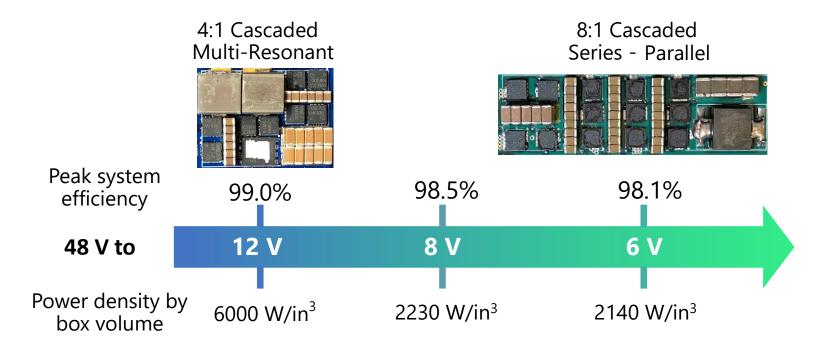

EPC Buck [2]

94

 (W/in^3)

density

Power



[1] Z. Ye, et. al., "A 48-to-6 v multi-resonant-doubler switched-capacitor converter for data center applications," in 2020 IEEE APEC.

[2] E. Inc., "Building the Smallest and Most Efficient 48 V to 5 - 12 V DC to DC Converter using EPC2045 and ICs," 2018.

[3] EPC Inc., How to Exceed 98% Efficiency in a Compact 48 V to 6 V, 900 W LLC Resonant Converter Using eGaN FETs, 2018.

Conclusion

Acknowledgment

OCP GLOBAL SUMMIT

DCP FUTURE TECHNOLOGIES SYMPOSIUM

2021 OCP Global Summit | November 8, 2021, San Jose, CA