Date of the other (DC-SCI)

for Modular Building Block Architecture (MBA, The Catalyst)

> **Rajeev Sharma** Director, Software & Data Center Solutions Oct 23, 2019

Work-in-Progress as of 10/23

Microsoft & Google

Platform Teams Present

In preparation for an OCP specification, this slide deck is a progress report based on continued feedback received on DC-SCM, DC-SCI, and PCIe Slot Cable Assembly.

It is subject to change without notice.

Feedback from

Lenovo Wiwynn Intel AMD Dell Inspur Quanta Inventec Dell Sanmina Supermicro

Outline

- Motivation, Background, and Review
- Update on MBA and on DC-SCM & DC-SCI
- Received Feedback
- Open-source Activities

Motivation

- Open-source Modular approach for faster TTM
- Modeled after well-known interfaces such as PCIe
- Standardizing Common Blocks and Interfaces
- Target interoperability with ease!
 - High-speed Interconnect (PCIe Gen-4 and Gen-5)
 - Datacenter-ready Security, Control, and Management

For a successful Modular Building Block Architecture, we need:

- Compute Modules (CPU/Memory/IO) (CMIO)
- IO & Accelerator Add-in Card Modules (AIC)
- Security, Control, and Management (SCM)
- Data-plane Control
- A suitable Interconnect

Modular Building Block Architecture (MBA)

- Is based on small building blocks
 - to allow flexible and agile system integration
- Clearly defines input/output ports
 - for interoperability with CPU boards from various suppliers
- Riser-based & Cable-based IO Slots
 - offer flexibility of choice-- ready for PCIe Gen-4 and Gen-5

MBA is a <u>Catalyst</u> for interoperable *Innovation!*

DC-SCM Facilitates MBA

A standards-ready secure control module, *DC-SCM*, enables the design and deployment of CPU/Memory Complexes and Expansion Chassis to become simply a routine exercise based on guidelines from CPU and SoC suppliers!

Examples of Modular Building Block Architecture (MBA)

CPU/Mem/IO Module

- Just the essential Central Compute Eleme
- High-speed Memory and
- IO Connectors Close to the SoC
- Get ready for *PCIe Gen-5!*

DC-SCM

- Everything Else!
- Security, Control, Management

Add-in Card (AIC) Attachment IO Slot to CPU Board Cable Harness Ready for High-speed!

AIC Attachment...Cont'd IO Slot to CPU Board Cable Harness

SFF-TA-1002 4C Scalable Connector

PCIe Slot Connector for an Add-in Card in PCIe CEM form factor

CPU/Mem/IO + DC-SCM

Realized the concept

Single socket processor and SCM as separate

PCIe Slot to Gen-Z Pin Map (out for review- not final yet!)

ASSE	MBLY PINOUT	TABLE	ASS	SEMBLY PINOUT	TABLE	
PCIe Side-A		Gen-Z Side-A	PCIe Side-B		Gen-Z Side-B	Gro
P1	Description	P2	P1	Description	P2	
A1	PRSNT_1	A1	B1, B2, B3	P12V	B1/B2/B3/B4/B5/B6	Po
A2, A3	P12V GND	B1/B2/B3/B4/B5/B6	B4	GND	GND	
A4 A5	JTAG2	A5 A42	B5 B6	SMCLK SMDAT	A7 A8	-
A6	JTAG3	A42	B7	GND	B13	
A7	JTAG4	A3	B8	P3.3V	A69/B68/B69	Hig
A8	JTAG5	A4	B9	JTAG1	A68	שייין
A9, A10	P3.3V	A69/B68/B69	B10	P3.3V_AUX	B11	
A11	PWRGD	B10	B11	WAKE	A70	
A12	GND	A6 B15	B12	CLKREQ	A11	De
A13 A14	REFCLK_P REFCLK_N	B15 B14	B13 B14	GND HSON_0 (TX)	B16 B17	
A14 A15	GND	A13	B14 B15	HSOP_0(TX)	B17 B18	
A16	HSIN 0 (RX)	A17	B16	GND	GND	
A17	HSIP_0 (RX)	A18	B17	NC_PRSNT_2_B17	NC	Ot
A18	GND	A16	B18	GND	B19	
A19	NC_RSVD_1	NC	B19	HSON_1(TX)	B20	
A20	GND	A19	B20	HSOP_1(TX)	B21	Re
A21	HSIN_1(RX)	A20	B21, B22	GND	B22	Ke
A22 A23, A24	HSIP_1(RX)	A21 A22	B23 B24	HSON_2(TX) HSOP_2(TX)	B23 B24	1
A23, A24 A25	HSIN_2(RX)	A22 A23	B24 B25, B26	GND	B24 B25	
A25	HSIP 2(RX)	A23	B25, B26 B27	HSON 3(TX)	B25 B26	1
A27, A28	GND	A25	B28	HSOP_3(TX)	B27	
A29	HSIN_3(RX)	A26	B29	GND	B28	
A30	HSIP_3(RX)	A27	B30	PWRBRK	B8	
A31	GND	A28	B31	PRSNT_2_B31	A12	
A32	NC_RSVD_2	NC NC	B32	GND	B29	
A33 A34	NC_RSVD_3	A29	B33 B34	HSON_4(TX)	B30 B31	-
A34 A35	HSIN_4(RX)	A30	B35, B36	HSOP_4(TX)	B31 B32	
A36	HSIP_4(RX)	A31	B37	HSON_5(TX)	B33	
A37, A38	GND	A32	B38	HSOP_5(TX)	B34	
A39	HSIN_5(RX)	A33	B39, B40	GND	B35	
A40	HSIP_5(RX)	A34	B41	HSON_6(TX)	B36	
A41, A42	GND	A35	B42	HSOP_6(TX)	B37	
A43	HSIN_6(RX)	A36 A37	B43, B44	GND	B38	
A44 A45, A46	HSIP_6(RX)	A37 A38	B45 B46	HSON_7(TX) HSOP_7(TX)	B39 B40	-
A43, A40 A47	HSIN_7(RX)	A39	B47	GND	B40	
A48	HSIP_7(RX)	A40	B48	PRSNT_2_B48	B42	
A49	GND	A41	B49	GND	B43	
A50	NC_RSVD_5	NC	B50	HSON_8(TX)	B44	
A51	GND	A43	B51	HSOP_8(TX)	B45	
A52	HSIN_8(RX)	A44	B52, B53	GND	B46	
A53	HSIP_8(RX)	A45 A46	B54 B55	HSON_9(TX)	B47 B48	-
A54, A55 A56	GND HSIN_9(RX)	A46 A47	B55 B56, B57	HSOP_9(TX)	B48 B49	
A57	HSIP_9(RX)	A48	B58	HSON_10(TX)	B50	
A58, A59	GND	A49	B59	HSOP_10(TX)	B51	
A60	HSIN_10(RX)	A50	B60, B61	GND	B52	
A61	HSIP_10(RX)	A51	B62	HSON_11(TX)	B53	
A62, A63	GND	A52	B63	HSOP_11(TX)	854	
A64	HSIN_11(RX)	A53	B64, B65	GND	B55	
A65 A66, A67	HSIP_11(RX) GND	A54 A55	B66 B67	HSON_12(TX) HSOP_12(TX)	B56 B57	
A66, A67 A68	HSIN_12(RX)	A55 A56	B67 B68, B69	HSOP_12(TX)	B57 B58	
A69	HSIP_12(RX)	A50	B70	HSON_13(TX)	B59	1
A70, A71	GND	A58	B71	HSOP_13(TX)	B60	
A72	HSIN 13(RX)	A59	B72, B73	GND	B61	
A73	HSIP_13(RX)	A60	B74	HSON_14(TX)	B62	
A74, A75	GND	A61	B75	HSOP_14(TX)	B63	
A76	HSIN_14(RX)	A62	B76, B77	GND	B64	
A77	HSIP_14(RX)	A63	B78 B79	HSON_15(TX)	B65	
A78, A79 A80	GND HSIN_15(RX)	A64 A65	B79 B80	HSOP_15(TX)	B66 B67	
A81	HSIP_15(RX)	A66	B81	PRSNT_2_B81	B70	
A82	GND	A67	B82	GND	GND	
NC	NC_MGMT_RST	A9	NC	NC_MFG	B7	
NC	NC_LED/ACTIVITY	A10	NC	NC_DUALPORTEN	B9	
NC NC	NC_REFCLK1_P NC_REFCLK1_N	A14 A15	NC	NC_PWRDIS	B12	1
NC	INC_REPULKI_N	1412				

ound pin	Zero volt reference, all tied together	
wer pin	Supplies power to the card	
gh speed pin	High speed signals	
tect	Sense Pin	
her aux	May be pulled low or sensed by multi	
served	Reserved for future use and no connect	

Consume. Collaborate. Contribute.

iple cards ect

3M[™] Twin Ax Assembly

Cable compresses down to 7 mm without compromising period Insertion loss is not significantly impacted by folding

Adding Capacitors to the PCB

- **BN**
- Added high-frequency by-pass capacitors to power rails
 - to improve Power Integrity and
 - to reduce Simultaneous Switching Noise (SSN) effects

Two Assemblies in 1U Height (44.5 mm)

- Same PCB assembly for both assemblies to minimize number of SKUs
- Two PCIe Slots in 1U chassis
- Cable assembly folded onto itself

mm

20

Enabled Options Add-in Card (Riser Attached)

Realized Both Options (for Add-in Card attachment)

- **Cable connected PCIe** cards
- **Riser connected PCIe** cards

ПΡ

The Datacenter-Ready Secure Control Module (DC-SCM)

82

The Datacenter-Ready Secure Control Interface (DC-SCI)

DC-SCM (in a nutshell)

- DC-SCM is "the heart of the motherboard" when we extract CPU(PCH), Memory, and IO Slots
- Given a traditional 1S, 2S, 4S, ... Motherboard, extract CPU/PCH, DIMM Slots, IO Slots, and the associated VRs, Clock Drivers, and Reset Circuitry, and move them to a new Module
- The residual is the DC-SCM which will include everything else such as BMC, RoT, Flash, and PSU control along with optional Boot SSD and connectors for Fan control

DC-SCM (Motivation)

- Don't reinvent the wheel with each new server design
- Unify the solution to support multiple architectures

"Same as before" with F/W, S/W, & Services-maintaining the established tools and solutions experience with the same management, power sequencing, reset, FRU ID, VPD, ...

A vehicle to drive a common Boot, Monitoring, Control, and Remote Debug procedures for Xeon, EPYC, ARM64, and Power Servers with the same firmware, diagnostic tools, manufacturing tools

Software Standardization

Collaborating with CPU suppliers, Open Computing Project community (OCP), Linux Foundation, and Open System Firmware (**OSF**) to standardize the hardware and software for **OpenBMC** with **RedFish** interface and for the system BIOS/UEFI based on EDK-II

An example of DC-SCM

DC-SCM

- Receives Power
- Remote Control at Cloud Scale
 - CPU/Memory/IO Module (Xeon, EPYC, AR
 - Expansion Chassis (JBOD, JBOG)
 - Fans, PSUs
- Includes
 - BMC and Rack Management Interface
 - Flash Devices (all Firmware)
 - RoT and TPM for Security
 - Optional Boot SSD
 - Remote, at-scale Debug

Another Example of DC-SCM (OCP NIC3 Form Factor)

SFF-TA-1002 4C+ 168-pin, Scalable **Connector**

With a mechanical key to avoid plugging in the NIC 3.0 connector & vice-versa

Form Factor	Width	Depth	Primary Connector	Sec
SFF	W1 = 76 mm	L = 115 mm	"4C+" 168 pins	N/A

DC-SCM

DC-SCM

Realized, Wiwynn has made

DC-SCM (Block Diagram Example)

An Example of SCM Expander Connectors

Function	Qty
M2 socket	1
TPM connector	1
SPI socket	5
RoT connector	1
VGA cable connector	1
NCSI cable connector	1
Front panel cable connector	1
FAN cable connector	2
BMC debug UART Pin header	1
HOST UART Pin header	1
Auxiliary UART Pin header	1
Reserved UART Pin header	1
Pin header	2
PSU cable connector	2
JATG cable connector	1
Reserved USB cable header	1
ID LED header	1
Battery	1
I2C Header	1
Golden Finger	1

SFF-TA-1002 4C+ 168-pin, Scalable **Connector**

DC-SCM to CPU/Mem Module Interface (DC-SCI)

Pinout and definition

Pin Reduction via SGPIO

Dedicated Signals through DC-SCI Signals conditioned through the SCM CPLD rsGPI: Signals Multiplexed via CPU_CPLD, presented in Registers at SCM_CPLD, READ by BMC rsGPO: BMC WRITEs into SCM_CPLD Registers, signals Multiplexed via sGPO, CPU_CPLD de-Muxes them sGPI: Signals Multiplexed via CPU_CPLD, de-Muxed by SCM_CPLD for BMC to use directly sGPO: Signals Multiplexed via BMC_CPLD, de-Muxed by CPU_CPLD to various places

DC-SCM accelerates deploying servers from various suppliers into the datacenter

Standardizing **DC-SCI** for ease of integration into various datacenters Flexibility to use **BMC** and **RoT** chips of choice on any platform

From a Datacenter point of view:

with one DC-SCM, a datacenter may support multiple variants of servers (AMD-, Xeon-, ARM64-, Power-based 1S, 2S, 4S, ...) and expansion chassis, JBODs, JBOG, JBOFs, ...

From OEM/ODMs' point of view:

A product will fit datacenters of various CSPs or Hyperscalers

If we are smart, one DC-SCM may enable supplier products into different DC types; otherwise, each Datacenter Provider may have its own version of DC-Collaborate. Contribute.

Thanks!

DC-SCM (Ingredients)

- Most MBA building blocks are stateless
- The secure control module (DC-SCM) includes all system related components (other than CPU/Mem/IO) that are normally present on Motherboards
- Baseboard Management Controller (BMC), Realtime Clock (RTC), FAN/PSU Control, Root of Trust Chip (RoT: Cerberus/Other and the associated circuitry), BIOS & BMC Flash, and the Boot Device
- SCM holds control bits secured (no firmware on CPU/Mem Module)

Call to Action

Design your Servers, Expansion Chassis, JBODs, JBOGs, JBOFs, multi-Server Chassis, etc. with

DC-SCI connector in mind.

Make your solution Datacenter-Ready!

Join the effort to enhance DC-SCM and DC-SCI https://www.opencompute.org/projects/server

DC-SCI (pinout implemented in PoC)

Connector Type: SFF-TA-1002 4C+ 168-pin, Scalable Connector

DC-SCM Connector: Gold-finger

CPU/Memory/IO Module Connector: Right-angled or Vertical Receptacle

Function	168	Comment
BIOS SPI	6	Serboard SPI
BMC_PCIE	7	PCIE to BMC
CPLD_SGPIO	9	CPLC comunication interface between MB/S
Critical GPIO	30	The critical event dedicate pin
GND	23	GND
I2C ALERT	13	I2C ALERT signal
JTAG	5	JTAG to MB
LPC & ESPI	12	LPC or ESPI
M2_CLK	2	PCIE clock to M.2 connector
M2_PCIE	4	PCIE to M.2 connector
PECI	2	PECI for Intel platform
POWER	5	3*P12V_STBY, 1* for LPC/ESPI power differ
Sequence	3	For sequence control reference
I2C	26	I2C BUS
SPI	0	SOC/PCH SPI to SCM board
UART	2	SOC/PCH UART to BMC
USB	4	SOC/PCH USB to SCM
Remote Debug	4	For Intel/AMD remote debug
ТРМ	2	TPM IRQ & chip select
FPGA SPI	4	Reserve for the FPGA FW
RSVD	5	Reserved
PSU Connector	0	PSU Connector signals

DC-SCM (Form Factors)

- The SCM is small enough to fit anywhere in the Chassis
- Flexible as development vehicle or for Expansion Chassis: 1. Cabled to Chassis Edge for external connections such as RJ45, Serial Console, and cabled internally for Fans, PSUs, ...
- IO connectors at the Edge of the Chassis; DC-SCI for interfacing to CPU/Mem Module:
 - 2. A plug-in module like OCP NIC-3: co-planar to CPU/Mem Module
 - 3. A plug-in module like low-profile PCIe cards: plugs vertically into the CPU/Mem module

Add-in Card (AIC) Attachment IO Slot to CPU Board Cable Harness

Examples of Modular Designs

Pin Reduction Techniques

Various techniques for reducing required BMC and DC-SCI pins

DC-SCI BMC sGPIO CPLD Signals conditioned through SMC CPLD Dedicated Signals

CPU Module CPLD serially shifts GPIOs to/from SCM CPLD; SCM CPLD replicates them on pins connected to BMC GPIOs. (for latency-insensitive signals that need "exact" replication at BMC for firmware compatibility)

CPU Module CPLD serially shifts GPIs to SCM CPLD; In response to an Event/Interrupt, BMC READs GPIOs via SPI (or I2C) (for latency-insensitive signals and signals that don't need "exact" replication at BMC for firmware compatibility)

BMC WRITEs GPOs via SPI (or I2C) into SCM CPLD. SCM CPLD serially shifts them onto CPU Module CPLD. CPU Module CPLD replicates them as parallel signals to go to various places on the CPU/Memory Module. (for latency-insensitive signals and signals that don't need "exact" replication at BMC for firmware compatibility)

