OCP openEDGE Enclosure Mike Moore, Nokia Regional Product Manager

Telecom & openEdge

SOLUTION PROVIDER®

Managing the lowest latency/cost trade off with a layered architecture Datacenter portfolio for all deployments from Far Edge to HyperScale

Network enhancement use cases at the edge Starting points to incrementally realize the target over time

RAN Cloudification & Evolution to 5G

Fixed Access Network Transformation

Open edge chassis overview

Key specifications

- 3U, 19" mountable (EIA-310 compatible)
- 130.6 x 440 x 430 mm (H x W x D)
- 12 kg / 26 lbs (Chassis with two PSUs and RMC)
- 1U and 2U, half width sleds are supported
 - Support for high end accelerators
- Redundant, centralized power supply
 - 2000 W max power feed capacity, 80+ Platinum
 - AC (100..127/200..240 VAC) and DC (-48 VDC) options
- Sled power feed capacity
 - 400 W (1U sled)
 - 700 W (2U sled)

мміт

- Environmental
 - Full NEBS compliancy, seismic zone 4
 - [GR-63-Core, GR-1089-Core]
 - Extended operating temperature range
 - -5C..+45C [ETSI EN300 019-1-3 Class 3.2]
 - short term : -5C to +55C [GR-63-CORE]

Open edge chassis overview

Key specifications

- Cooling: Fan units are part of sled solution
 - Air flow direction configurable: front-to-rear/rear-tofront
- Chassis management controller (RMC)
 - PSU management (control, sensors, ..)
 - Management Ethernet interface to sleds
 - 1 GE to all sleds via backplane
 - 1x 1 GE (RJ45) + 2x 10 GE (SFP+) front panel interface for external connectivity and chaining of multiple chassis
- All sleds managed through single interface in RMC unit
 - On board BMC (in server sleds)
- Power distribution board and chassis backplane provide connectivity between RMC, sleds and PDUs

1U and 2U Server Sled Contributions

Key Specifications

PCH options: Intel C621, C627 (with QAT) Memory: 6 x DDR4-2933 + 2 x Intel Optane Single riser for disks and add-in cards

PCIe x16, FHHL, 75 W (1U) 1 x PCle x16, FHFL, dual-wide, 300 W max (2U) OCP Mezzanine 2.0, PCIe x16

2 x hot-plug SSD, SATA/NVMe, 2.5 ", 7/9.5 mm 2 x hot-plug SSD, SATA/NVMe, 2.5 ", 7/9.5/15 mm (2U) 2 x M.2 SSD, SATA/NVMe, 2280/22110

OpenEdge builds compute at the network edge to meet real-time requirements

Outdoor & indoor

Compute & Power efficiency:

High performance cloud computing platform supporting Telco VNFs

Intel Xeon SP Platinum CPU up to 28 cores, 400W per 1U sled and 700W per 2U sled.

Deployment Flexibility

Deployable at radio site (D-RAN) and at Far Edge (C-RAN)

Cooling optimization, Re-use of AirScale indoor/outdoor cabinets

OpenEdge Sleds

PCIe Accelerator

Compute / Switching / Storage / Optical / etc

Opportunity to build the ecosystem with sled contributions to meet a variety of Far Edge Use Cases Virtualized real-time with targeted Acceleration:

PCIe add-on cards with FPGA / DSP / GPU / etc based accelerators

Accelerators for AI/ML, video, security, IoT, etc

OpenEdge Platform is purpose built for Far Edge, differentiating with performance and innovation

openEDGE Ecosystem Status

openEDGE product evolution

• April openEDGE was announced at NFV World Congress

- Planning began for openEDGE contribution to OCP and subcommittee formation
- Working Demo shown at Amsterdam Summit
- Draft Specifications Released
- Commercial Availability Achieved

2Q18	3Q18	4Q18

- First Commercial Contract
- F2F Design Workshop held in Mountain View
- V1.2 of the Chassis Specification granted as "OCP Accepted"
- Continue to promote community involvement and adoption

openEDGE Sub-committee Status

The project will gather requirements and specifications for the Open Edge computing platforms from the adopters.

- This will include (but not exclusively)
 - dimensions
 - power budgets
 - cooling requirements
 - networking requirements
- Nokia has contributed openEDGE server chassis specification and design files
 - Draft of openEDGE Server Chassis Specification OCP Accepted
 - Draft of openEDGE Server Specification applying for OCP Inspired
 - https://www.opencompute.org/wiki/Telcos/openEDGE

ACCEPTED

openEDGE ecosystem needs

- Functionality required for the Far Edge as new Applications drive processing requirements
- Further compression of devices to provide a compact solution
- Additional Sled Designs
 - Switch
 - Router
 - Optical
 - Storage
 - Accelerators
 - **Battery Backup**

Thank You!

© 2019 Nokia 11