Outline

• Introduction to Western Digital Accelerator Platform

• Target Use cases
 – Video Transcoding
 – Machine Learning
 – Computational Storage

• Conclusion
Western Digital Compute Accelerator Platform

FPGA Based PCIe ML/AI Accelerator Device in U.2 Formfactor

- Xilinx® UltraScale+™ MPSoC XCZU7EV
- 4GB DDR
- Gen3 x4 PCIe 2.5” SFF
- 25W Max Power
Western Digital Compute Accelerator Platform

- Versatile & Scalable
- Data center ready

<table>
<thead>
<tr>
<th>Use case</th>
<th>Market</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video transcoding (H264/H265)</td>
<td>HD/UHD video streaming VoD, Sports, Gaming</td>
</tr>
<tr>
<td>☞ XILINX.</td>
<td></td>
</tr>
<tr>
<td>AI-Inference: image/video</td>
<td>Image/Video: Classification, Segmentation, Super Res, Pose Est., etc.</td>
</tr>
<tr>
<td></td>
<td>Video Surveillance</td>
</tr>
<tr>
<td></td>
<td>Edge GW</td>
</tr>
<tr>
<td></td>
<td>Smart City</td>
</tr>
<tr>
<td></td>
<td>Medical Imaging</td>
</tr>
<tr>
<td>Computational Storage</td>
<td>TP4091 Prototyping</td>
</tr>
<tr>
<td>NVMe™ & eBPF Support</td>
<td>Analytics Acceleration</td>
</tr>
<tr>
<td></td>
<td>Video Applications</td>
</tr>
<tr>
<td></td>
<td>Database Applications</td>
</tr>
</tbody>
</table>
Use case: Video Transcode Accelerator

- Developed in Partnership with XILINX
- Decode/Encode H.264/H.265 Streams
- Integrated with FFmpeg
- Supports inputs up to 4K@60fps
- Transcode multiple video streams
- High Performance
- Excellent Performance/Power
- Scalable, Supports Hot Plug
- Limited Availability now
 - Xilinx PN A-U2MA-P04G-PQG-021
Video Transcode Performance with Western Digital Accelerator

- Western Digital Accelerator beats performance of 32 x86 CPU cores
- Effective Compute Offload
 - 100x fewer instructions executed
 - 10x to 20x fewer Stall cycles on x86 CPU
 - 50x to 100x reduction in DRAM traffic
- Scalable performance
 - Multiple accelerators per Server

Multiple ffmpeg instances on sets of 4 x86 CPU Cores, each at utilization of ~85%
Performance Power ratio

- Western Digital Accelerator
 - Less than 20W at peak performance
 - CPU close to Idle
- 32-core x86 CPU
 - Almost 100W higher for similar or lower performance
 - Each x86 CPU core adds ~3W of power consumption

- ffmpeg invoked to transcode 1080p 60fps input stream into multiple lower resolution streams
- Multiple ffmpeg instances on sets of 4 x86 CPU Cores, each at utilization of ~85%
Target Use: ML Inference Accelerator

• Supported Frameworks
 – TensorFlow, PyTorch, MXNet, Caffe

• Run any pre-trained CNN models without modifications
 – Automatic quantization, No pruning required
 – Up to a Billion weights, Million Layers
 – Concurrently run two separate networks

• Supports wide variety of Networks
 – ResNet, Yolo, Inception...
 – SSD, EfficientDET, MaskRCNN...
 – SRGan, AlpaPose...
 – List continually updated

• Networks can be split
 – Compute Intensive Layers accelerated in FPGA
 – Unusual layers can be kept on CPU
 – Allow new networks and architectures
 • EfficientDet/Net, BERT, LSTM, etc.

• In partnership with Mipsology Inc.

Network Performance (img/sec)

<table>
<thead>
<tr>
<th>Network</th>
<th>Performance (img/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inception V3</td>
<td>246</td>
</tr>
<tr>
<td>Inception V4</td>
<td>118</td>
</tr>
<tr>
<td>ResNet 50</td>
<td>479</td>
</tr>
<tr>
<td>ResNet 152</td>
<td>198</td>
</tr>
<tr>
<td>Yolo V1</td>
<td>66</td>
</tr>
<tr>
<td>Yolo V2</td>
<td>72</td>
</tr>
<tr>
<td>Yolo V3</td>
<td>22</td>
</tr>
</tbody>
</table>
Target Use: Computational Storage Platform

- Computational Storage over NVMe using eBPF
 - NVMe TPAR 4091 is a proposed standard to enable Compute Offload to Storage devices
 - Download and Execute SW Kernels built as eBPF code binaries running in a VM
 - Offload compute to SW/HW Kernels on the Compute Storage Processor (CSP) or Device (CSD)
 - HW Kernels via Custom RTL in FPGA
 - NVMe Target Controller split between FPGA and ARM Cores
 - Maximize resources for Accelerator functions
- Support P2P DMA over PCIe
 - Reduction in PCIe/Network/DRAM traffic
- Flexible boundary between HW & SW
 - Implement features in SW
 - Migrate features to HW over time
- Applications development underway
 - Image/Video Analytics
 - Database Acceleration
 - Genomics
 - Actively under development
Conclusion

• Western Digital Compute Accelerator is a versatile device in a useful formfactor

• Video Transcoding is a compelling application for the Compute Accelerator Device
 – Significantly better performance
 – Lower total power and cost
 – Reduction in DRAM traffic
 – Free up CPU for other work

• Additional Compute Acceleration features/applications are within reach
 – ML Inference solution available now
 – ML Training solution in the works
 – NVMe + eBPF to offload CPU workloads, disaggregate from Compute Servers
 – P2P DMA to Storage devices to further reduce traffic on the host

• Contact for more information
 Ted.Marena@wdc.com
 Anand.Kulkarni@wdc.com