

Managing Barbeques in Data Centers Agenda

High Density Data Center Facility Challenges Liquid Cooling Opportunities

- Types of Liquid Cooling
- Energy Opportunities
 - Optimizing PUE
 - Energy ReUse
- Simplifying Liquid Installation, Reliability

How Many Barbeques Fit In A Data Center?

- Avg IT Loads = < 10KW/rack (note - one barbeque = 10KW of heat)
- AI / HPC Applications = > 40KW/Rack Crypto-Currency => 200KW/tank

Data Centers =

- 30 yr Buildings, 3 year Vision
- Adapt or Perish

Image Source: Weber Barbeque, Weber.com

"Liquid Cooling" (ASHRAE TC9.9)

- Single phase
- Dual phase

Liquid Cooling Types—

- Condenser Water

ASHRAE TC 9.9 Liquid Cooling Guidelines for Datacom Equipment Centers (©2014)

 Liquid Cooled Rack (Rear Door, etc) • Liquid Cooled IT (Chassis cooling, Cooled Plate...) Liquid Cooled Electronics (immersion cooling)

• Facility Water – i.e. CW system • DiElectric with HX to Facility, Condenser, or external

Chilled-Water Cooling to Row & Rack Inrow RearDoor

Image Source – Schneider Electric

Motivair Chilled Do

OptiCool Cool Door System

Liquid Cooling to server, immersion Server Immersion

Enhanced Nucleation Evaporator (ENE) and the Server-Kit

2 Phase - Image fm Zutacore

Single Phase - Image fm CoolIT

Single Phase Example (GRC)

Optimizing Energy Usage Via Liquid Cooling

Optimizing PUE

- **Minimum PUE as Density and Diversity Increase**
- **Cascade Cooling** (Optimizing PUE)
 - rejection temperature from CRAH units provides supply temp for cold plate, immersion cooling
- **Energy ReUse** ReUse waste heat from data center for building, district or agriculture applications

Facility Water Requirements (ASHRAE TC9.9)

Table 5.1 ASHRAE Liquid Cooling Guidelines

	Typical Infra		
Liquid Cooling Class	Primary Facilities Cooling Equipment	Secondary/Supplemental Cooli <mark>n</mark> g Equipment	Facility Water Supply Temperature
W1	Chiller / Cooling Tower	Water Side Economizer (with Dry Cooler or Cooling Tower)	2°C−17°C
W2			2°C−27°C
W3	Cooling Tower	Chiller	2°C-32°C
W4	Water Side Economizer (with Dry Cooler or Cooling Tower	N/A	2°C−45°C
W5	Building Heating System	Cooling Tower or Dry Cooler	>45°C
			ADVANCED COOLING ADVANCED

Facility Water Requirements (ASHRAE TC9.9)

Liquid Cooling Class

Cooling	Tower
---------	-------

W1/W2/W3

W4

Dry Cooler or Cooling Tower

Dry Cooler OF

W5

Cooling Tower

Building Heating System

ASHRAE liquid cooling classification, typical infrastructure Figure 5.3 design schematics.

High Density + Reuse Simplified

OCP GLOBAL SUMMIT

Creative Energy Options - "Cascade Cooling"

Motivair Chilled Do

OptiCool Cool Door System

2 Phase - Image fm Zutaco

- Supply (20-25 C) (TC9.9 W1, W2)
- Return (30-35 C)

Single Phase - Image fm CoolIT

Liquid Temperatures, Cold Plate • Supply (25-35 C) (TC9.9 W2, W3) • Return (35-45 C)

Liquid Temperatures, Immersion Cooling

- Supply (30-60 C) (TC9.9 W3, W4, W5)
- Return (45-70 C)

Energy Reuse Application

OCP GLOBAI SUMMIT

• **PUE** (Power Usage Effectiveness) "Perfect" PUE = 1.00

- ERF = Reuse Energy • **ERF** (Energy Reuse Factor) Total Energy "Perfect" ERF = 100%
- **ERE** (Energy Reuse Effectiveness) $ERE = (1-ERF) \times PUE$

PUE = Total Energy IT Energy

Increased focus on IT industry energy usage drives need for energy reuse metric

Pipe Solution Needs

 Adaptable •Rapid Deployment, Simplistic Alignment •BIM Precision, Reference Designs Mission Critical Performance

Enabling Liquid Distribution Success

Simplify – Concept to Construction Advancements in BIM Tools + Adaptability

Reference Design

Lean Installation

VDC / Detail design / Cut length

A-BOM / BOQ and list of pipe lenghts Coordination in an early stage with warehousing and allocation of the material

Page 1 of 2								
Project Name : Project number :	Equinix 74877_AAF (based	i on DRW 74877_AAF)	-					
System : Note :	Cooling Pump Room B							
Area	Quantity	Article Code	Description					
Rucklauf chillers	16	C0W070457000002	437.0 mm/18 Style W07 AGS Rigid Cplg Orange PhysicSeal EPDM Gskt					
Rucklauf chillers	6	F0W100457000002	457.0 mm/18 No W10 90° AGS Elbow Orange					
Rucklauf chillers	1	F0W200457000002	457.0 mm/18 No W20 AGS Tee Orange					
Rucklauf chillers	2	VW7610457000004	457 mm/18 AGS Vic-300 MasterSeal Butterfly Valve Black EPDM Gear Op Dew Block					
Rucklauf chillers	1	F0W000813000001	813 mm x 457 mm / 32" x 18" Reducer flanged (FN6) - grooved (AGS)					
Rucklauf cracks	10	C0W070355000002	355.6 mm/14 Style W07 AGS Rigid Cplg Orange FlushSeal EPDM Gskt					
Rucklauf cracks	12	C0W070457000002	457.0 mm/18 Style W07 AGS Rigid Cplg Orange FlishSeal					

Simplicity in Alignment is Key Challenge

The Flange Challenge

Centerline Hi/Low

Parallelism

Excessive Spacing or Gap

The Coupling Solution

Eliminate alignment issues – rotational, angularity, pipe movement

Adaptable, Reliable Liquid Distribution

- **Precision Design (BIM LoD 400)** ullet
- Fast
- Low Risk, No Hot-work
- Low Labor
- lacksquare
- **Mission Critical Compliant**

Extended Warranties Available – 30 years

Call to Action – Defining Mission Critical Pipe Solution

Origins of "3 Pillars of Mission Critical" April 10 1963, USS Thresher, SSN 593

593

"the loss of the Thresher should not be viewed solely as the result of failure of a specific braze, weld, system or component, but rather should be considered a consequence of philosophy of design, construction and inspection" Admiral Rickover -

Defining Mission Critical Grade Pipe Solutions

Three Pillar Mission Critical Performance Summary

	o Coupling Design	"installatic
Pillar 1:	o Seismic performance –	Performan
HOIISTIC	o Expansion/Contraction Performance	Performan
Design	o Vibration response, reduction analysis	Performan
	o Temperature, pressure, liquid types	Gasket mat
Pillar 2:	o Single manufacturer of product solution	Couplings &
Vertically	o Quality/performance testing, traceability	Gaskets an test date
integrated	o Revit Design Support	Content lib accuracy
Quality Control	o Global Access and Quality Control	Certificatio
Pillar 3:	o Simplified Installation Process	Simplified i
Certified	o Visual Inspection Process	Verificatior
Inspection & Installation	o Certification of installation inspectors	manufactu

on ready" for direct stab installation without field disassmbly

ce data verified for seismic movement

ice data for thermal, building movement

ce data verified for vibration mitigation

terial performance data for liquid type, temperature and pressure

& gaskets from same manufacturer

nd housings traceable from installation back to manufacture date, location,

praries accurate to +/- 0.01 inch to enable construction grade design

on of all production sources globally to ISO9001 standards

installation without disassembly. Factory training/certification program

n of proper installation and performance via visual inspection

arers shall provide installation certification training to all installers.

XX.

ADVANCED

COOLING

SOLUTIONS

OCP GLOBAL SUMMIT

Recommended Actions and Timelines-

- DCF Integrate energy reuse into OCP goals Dec 2020

Links:

- https://www.cooldc.co.uk
- https://www.victaulic.com
- https://www.opencompute.org/projects/data-center-facility
- TheGreenGrid http://thegreengrid.org
- ASHRAE TC9.9 <u>http://tc0909.ashraetcs.org/</u>

Additional thanks to input from GRC, LiquidCool, Asperitas, Motivair, Submer, Iceotope, Allied Control, 3M, Dell, HP, Schneider, Vertiv, Stulz, Engineered Fluids, Lenovo, Qcooling, Asetek for public concepts and images.

DCF - Define "mission critical grade" standards for liquid distribution – June 2020

MARCH 4 & 5, 2020 | SAN JOSE, CA