OCP – ODSA Project

Commercialization Use Case

eTopus Inc.
ODSA BOW project for Chiplets
Kash Johal, VP Sales
Why ODSA at eTopus

1. eTopus was requested to develop a BOW solution by existing SERDES client
 - eTopus is a leader in SERDES IP – 1-112G @ 16nm, 7/6nm fully validated
 - Millions of units shipped into Tier 1 accounts

 a. We developed the solution based on customer demand & applicability of BOW PHY to chiplets which is an emerging target market

 First customer cannot share specific details as we are under NDA

 Second engagement with FPGA company – Quicklogic to use BOW PHY

 b. eTopus involvement with ODSA?
 - Since 2021
 - More Active in 2022 meetings and calls
 - Standardization & ODSA is key enabler for chiplets beyond closed internal teams
ODSA Use Case at eTopus

- Product intersection with ODSA BOW & Chiplet spec
 - 1. ODSA BOW d2D PHY is our focus
 - 2. 22nm GF will be complete Mid 2022, 4G/8G 0.6-0.75 pj/bit
 - 7/6nm TSMC will be done end 2022 4G-16G < 0.5pj/bit target
 - 2023 Interested in supporting next gen BOW – merge with UCIe Physical specs
 - 3. First customer engagement in progress
 - Can not release details due to NDA
 - 4. Second customer engagement in progress
 - Quicklogic - FPGA chiplet - will discuss specifics in their presentation
 - 5. Specifics on deployment timeline
 - First customer will receive delivery in 2022
BOW what is great & what is problematic

• **Great**
 - Flexible architecture – can bypass link layer
 - Non terminated – for lowest power & Terminated – higher speeds
 - Flexible bump pitch we are using 130 u & 45
 - Works great for **straight simple routes - streaming interfaces**
 - Excellent work on interoperability being done

• **Not so Great**
 - 16 bits data is limiting for common interfaces
 - Low latency FEC not defined for high speed connections
 - Connecting chiplets with multiple layers, angles is problematic
 - it’s not like connecting 8-10 chips on a PCB
What is Next for ODSA at eTopus

• Supporting multiple processes with BOW PHY support
• 22nm -> 7/6nm -> 5/4nm......
• Supporting I/O chiplets to simply attach directly to SOC / FPGA

• Our focus is leveraging common interfaces across BOW/UCle
• Leveraging I/O chiplets for standard interfaces:
 • 800G ethernet across 64 lanes @16G/link
 • 1.6T ethernet across 64 lanes at @32G/link
 • PCIe Gen 6/CXL3 across 32/64 lanes (various link speeds)
 • JESDD upcoming PAM4 across @8/16G/link
 • USB 4v2 (PAM3) upcoming USB 4 across @ 8/16G links
Questions