BoW Progress Report

• Completed and moved BoW Specification rev 0.7 to Github:
 • https://github.com/opencomputeproject/ODSA-BoW

• The review committee planned weekly meetings and participants inputs on Spec 0.7 boiled down to ~20 distinct issues

• Major Step: Successfully finalized and reached a consensus on the BoW Interface Objectives
BoW High-Level Objectives
(Based on industry surveys)

• A set of backward compatible die-to-die parallel interfaces that provides the flexibility to trade off the following key factors:
 → Throughput per die edge
 → Design Complexity
 → Packaging Technology Cost

Backward Compatibility Definition: Each future version of this interface is expected to be compatible with at least two previous significant versions.
BoW Interface Objectives

• High Energy Efficiency Target <1 pJ/bit

• Beachfront Bandwidth (aggregate Transmit + Receive):
 • >100Gbps/mm with all packaging options
 • >1Tbps/mm with preferred packaging option

• Trace length ranges on laminate substrate:
 • Unterminated reach <10mm
 • Terminated reach <50mm

• Latency & BER Target Requirements:
 • Low-latency mode (w/o FEC) : Latency <5ns & BER < 1E-15
 • Latency <5ns required for high-performance compute applications
 • Ultra-low BER mode (w/ FEC): Latency <15ns & BER < 1E-25

Latency Definition: Delay from the source PCS parallel interface to destination PCS parallel interface
BoW Interface Objectives (Cont.)

• Portable across wide process nodes ranging from 28nm to 5nm
 • A necessity for heterogenous integration with wide range of chiplets

• Single supply core supporting Vdds compatible with CMOS process nodes from 28nm to 5nm

• Support Conventional & Advanced Packaging Technologies
 • Low-Cost Organic Substrates (bump pitch 100u-130um)
 • Advanced 2.5D Interposer (bump pitch 30u-55um)

• Be unencumbered by Patent Licensing Fees/Royalties
BoW Next Step

• The next goal is to release BoW Spec 0.9 by March 2020
• In preparation to release rev 0.9, the committee is planning to close the following key 6 issues:
 • Reference Bump Maps
 • Clocking Requirements
 • Test and Testability
 • Calibration Mode
 • Initialization
 • Interoperability