

HW/SW Co-Design for Predictable IO Latency

Nav Kankani, HW Solutions TPM
Vijayan Rajan, SW Engineer
Facebook, Inc.

Context - Today’s Storage Types
Transactional Archival

Core Register L1/L2/L3 Cache DRAM/SCM SCM/Flash FLASH/HDD HDD/TAPE

Size 64KB-2MB 16GB-128GB 128GB-1TB 512GB-4TB 4TB-16TB

Speed 1-20ns 50- 1us 250ns-50us 1-5ms 5-100ms

Storage Tier S0 (Financial) S1 (Transactional) S2 (Warm non-
transactional)

S3 (Archival/Cold)

Storage
Architecture Scale-up/ Block Store/High Resiliency/Availability Scale-out/File-Object/Feature-Rich/Cost

Storage
Application My-SQL/Oracle/SAP Cassandra/MongoDB/Rocks-DB Warm-storage/Cold-Store

Industry Trends – NAND Flash Storage

ØNAND Flash Densification
Ø IOPS/TB decreasing

0

0.2

0.4

0.6

0.8

1

1.2

1.4

4

8

12

16

20

24

28

32

256 512 1024

Se
q

u
en

ti
a

l W
ri

te
 B

W
 p

er
 T

B
 (G

B
/s

)

N
u

m
b

er
 o

f
N

A
N

D
 d

ie
 p

er
 1

 T
B

NAND Flash die density

Number of NAND die and write BW per TB vs. die density

Number of die per TB

Seq Write BW/TB

(2019) (2021) (2023)

ØLess NAND Die per TB
Ø Increase in IO latency and

unpredictability

Facebook’s Architecture
• Massive levels of Sharding to

connect users

• Fetch requests incur large fanout
on the back-end

• Data read from many servers and
multiple pieces from each

USER

USER

USER

SERVER

SERVER

SERVER

CACHE

CACHE

CACHE

DB

DB

DB

Variability in Hyperscale Workloads

Asymmetricity in read and write access
pa0erns across shards

Read Bandwidth Variation at different
latency levels (P99 to P50)

Time

Read QPS

40 M

60 M

80 M

100 M

120 M

140 M

160 M

180 M

200 M

220 M

Time

P99

Read B/W

P90

P75

P50

Why Does Storage Latency Matter?
• 1 user request => ~10-1000’s

back-end requests
• Back-end requests have their

own read and write
amplification.

• Tail, rather than average
latency is important
• With N*M requests to N

servers, probability of high
latency is compounded.

Pr
ob

ab
ili

ty
 (S

er
vi

ce
 la

te
nc

y
>

1s
)

Number of I/O’s per user request

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
1 500 1000 1500 2000

1/100

1/1000

1/10,000

Problem Definition

• Unpredictable latency in storage stack exists.

• Large scale distributed system’s need predictable
latency regardless of unpredictable latency in the
storage stack.

Optimizing for predictable latency

sd

• Parallel operation paths
• Priority Queues
• New Device Features

Ø Write/Erase suspends
• Isolation

Ø Streams
Ø NVMeSets

• Predictable Latency Modes
• Max Read Recovery Limits

HW-Layer

Optimizing for predictable latency

• Shard Management & Rebalancing
• Pooling & Striping
• Block and Page Caching
• Tiering using SCM
• Write coalescing
• Dynamic Re-sizing

SW-Layer

Fl
as

h
 IO

PS

Time

LOW DRAM

HIGH DRAMNVM

Key Trade-offs to be made to buy latency credits:

• Restricted Resource Sharing
• Reduced workload &

scalability
• Lower queue depths
• Throttled Performance
• Inefficient power

management

10%
50%

80% 90%

95%

100%

IO Request per Second

Re
sp

on
se

 T
im

e

Why HW/SW Co-design for Predictable Latency?

• Impractical to eliminate IO stack latency at HW layer
alone.

• Leverage existing latency trade-offs in HW & SW
development.

• Knowledge of Application Domain opens new optimization
opportunities & architectures.

Facebook’s OCP HW – Flash Based

Lightning JBOF

M.2 card

Ava cardTioga Pass

Yosemite

Leveraging OCP HW for Efficiency and Latency

SWITCHSERVER

NVMe SSD STORAGE SERVER (⚡)

PCIe

SERVER

N/W
N/W

....

SERVERSERVER

PCIe expander
PCIe

RocksDB at Facebook

• Most database technologies at
Facebook use RocksDB
Ø ZippyDB: Replicated, Consistent

Key-value as a service
Ø MySQL: :Local Key-value store

• Each service is sharded (very)
widely.

MySQL / ZippyDB

RocksDB

FS / Kernel

Drivers

Architectural Options

MySQL / ZippyDB

RocksDB

FS / Kernel

Drivers

~100 MB/S

MySQL / ZippyDB

RocksDB

FS / Kernel

Drivers

Kernel

~3GB/S

Networking within & across racks
• Key-Value stores incur high write amplification.

Ø RocksDB is better, but is no exception.
• Huge difference in bandwidth:

Ø Compare: 120 MB/s reads/writes of small keys & values
(256 bytes) vs. 3000 MB/s disk reads and writes.

• Keeping amplified I/O local saves networking, improves
latency, especially tail latency.
Ø PCIe; sled-local networks; rack-local networks.

Flexible Hardware for Efficient Software
• Key/Value stores are CPU- and DRAM-hungry.
• Lightning JBOF-based designs achieve good sharing, and

great capacity management.
• Perfect for Blocks protocols; but difficult to run RocksDB

Ø 1 JBOF + 5-15 DB + RocksDB hosts: works perfectly.
Ø 1 JBOF with 5-15 RocksDB instances + 5-15 DB hosts:

extremely imbalanced.
• Need for a flexible combination of CPU+DRAM+SSD.

Leveraging Yosemite HW as Shared-Storage
• For RocksDB use cases, achieves better ratios.

Ø With two NVMe SSD per server in Yosemite Chassis:
1 CPU + X DRAM + 4- 8TB SSD

• Compare this against JBOF based design:
2 CPU + Y DRAM + 60-240TB SSD

• This is a comparison available with today's OCP choices.
Better designs and faster networking always welcome!

Design Imperatives: Flexible Ratios
• Hardware rearchitecting goes hand-in-hand with software

reconfiguration.
• At scale, getting efficiency is hard.
• We need a flexible set of building blocks: the right ratios of

CPU, DRAM and SSD within each server
… connected with low-cost, high-speed networks.

Conclusion:
• HW/SW co-design for predictable IO latency =>

Better together!
Application
Domain
Knowledge

System SW Storage HW

Optimizations
Better Together!

• Leverage FB’s OCP components for flexibility
to build multiple balanced solutions

• Customize architectures to be application
aware.

Please Visit Booths for more
information on OCP HW !

