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Context - Today’s Storage Types
Transactional Archival

Core Register L1/L2/L3 Cache DRAM/SCM SCM/Flash FLASH/HDD HDD/TAPE

Size 64KB-2MB 16GB-128GB 128GB-1TB 512GB-4TB 4TB-16TB

Speed 1-20ns 50- 1us 250ns-50us 1-5ms 5-100ms

Storage Tier S0 (Financial) S1 (Transactional) S2 (Warm non-
transactional)

S3 (Archival/Cold)

Storage 
Architecture Scale-up/ Block Store/High Resiliency/Availability Scale-out/File-Object/Feature-Rich/Cost

Storage 
Application My-SQL/Oracle/SAP Cassandra/MongoDB/Rocks-DB Warm-storage/Cold-Store



Industry Trends – NAND Flash Storage

ØNAND Flash Densification
Ø IOPS/TB decreasing
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NAND Flash die density

Number of NAND die and write BW per TB vs. die density

Number of die per  TB
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ØLess NAND Die per TB
Ø Increase in IO latency and 

unpredictability



Facebook’s Architecture
• Massive levels of Sharding to 

connect users

• Fetch requests incur large fanout 
on the back-end

• Data read from many servers and 
multiple pieces from each
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Variability in Hyperscale Workloads

Asymmetricity in read and write access 
pa0erns across shards 

Read Bandwidth Variation at different 
latency levels (P99 to P50)
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Why Does Storage Latency Matter? 
• 1 user request  => ~10-1000’s 

back-end requests
• Back-end requests have their 

own read and write 
amplification.

• Tail, rather than average 
latency is important
• With N*M requests to N 

servers, probability of high 
latency is compounded.
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Problem Definition

• Unpredictable latency in storage stack exists.

• Large scale distributed system’s need predictable 
latency regardless of unpredictable latency in the 
storage stack.



Optimizing for predictable latency

sd

• Parallel operation paths
• Priority Queues 
• New Device Features

Ø Write/Erase suspends
• Isolation 

Ø Streams
Ø NVMeSets

• Predictable Latency Modes
• Max Read Recovery Limits

HW-Layer



Optimizing for predictable latency

• Shard Management & Rebalancing
• Pooling & Striping
• Block and Page Caching 
• Tiering using SCM
• Write coalescing
• Dynamic Re-sizing 
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Key Trade-offs to be made to buy latency credits:

• Restricted Resource Sharing 
• Reduced workload & 

scalability
• Lower queue depths 
• Throttled Performance
• Inefficient power 

management
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Why HW/SW Co-design for Predictable Latency?

• Impractical to eliminate IO stack latency at HW layer 
alone.

• Leverage existing latency trade-offs in HW & SW 
development.

• Knowledge of Application Domain opens new optimization 
opportunities & architectures.



Facebook’s OCP HW – Flash Based

Lightning JBOF 

M.2 card

Ava cardTioga Pass

Yosemite 



Leveraging OCP HW for Efficiency and Latency 
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RocksDB at Facebook

• Most database technologies at 
Facebook use RocksDB
Ø ZippyDB: Replicated, Consistent 

Key-value as a service
Ø MySQL: :Local Key-value store

• Each service is sharded (very) 
widely.

MySQL / ZippyDB

RocksDB

FS / Kernel

Drivers



Architectural Options

MySQL / ZippyDB

RocksDB

FS / Kernel

Drivers
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Kernel
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Networking within &  across racks
• Key-Value stores incur high write amplification. 

Ø RocksDB is better, but is no exception.
• Huge difference in bandwidth:

Ø Compare: 120 MB/s reads/writes of small keys & values 
(256 bytes) vs. 3000 MB/s disk reads and writes.

• Keeping amplified I/O local saves networking, improves 
latency, especially tail latency.
Ø PCIe; sled-local networks; rack-local networks.



Flexible Hardware for Efficient Software
• Key/Value stores are CPU- and DRAM-hungry.
• Lightning JBOF-based designs achieve good sharing, and 

great capacity management.
• Perfect for Blocks protocols; but difficult to run RocksDB

Ø 1 JBOF + 5-15 DB + RocksDB hosts: works perfectly.
Ø 1 JBOF with 5-15 RocksDB instances + 5-15 DB hosts: 

extremely imbalanced.
• Need for a flexible combination of CPU+DRAM+SSD.



Leveraging Yosemite HW as Shared-Storage
• For RocksDB use cases, achieves better ratios.

Ø With two NVMe SSD per server in Yosemite Chassis:
1 CPU + X DRAM + 4- 8TB SSD

• Compare this against JBOF based design:
2 CPU + Y DRAM + 60-240TB SSD

• This is a comparison available with today's OCP choices. 
Better designs and faster networking always welcome!



Design Imperatives: Flexible Ratios
• Hardware rearchitecting goes hand-in-hand with software 

reconfiguration.
• At scale, getting efficiency is hard.
• We need a flexible set of building blocks: the right ratios of 

CPU, DRAM and SSD within each server
… connected with low-cost, high-speed networks.



Conclusion: 
• HW/SW co-design for predictable IO latency => 

Better together!
Application 
Domain 
Knowledge

System SW Storage HW

Optimizations
Better Together!

• Leverage FB’s OCP components for flexibility 
to build multiple balanced solutions 

• Customize architectures to be application 
aware.



Please Visit Booths for more 
information on OCP HW !




