BoW: Basic, Fast, Turbo
Die-to-Die Open Interface Solutions

ODSA Project Workshop
March 28, 2019

Mark Kuemerle
Ramin Farjad
Interface standardization

• Chiplet based systems will likely have a variety of different interfaces moving forward
 - Fast Serial interfaces with some compatibility to existing standards (eg 112GXSR)
 - Novel USR interfaces driven by an ecosystem (eg. Kandou/Marvell)
 - Simple interfaces for moving reasonable bandwidth between die from less cutting edge nodes
Does it make sense?

• Does it make sense to have another parallel standard?
 - AIB is a good starting point, currently has datarate and footprint definitions that limit use on a laminate
 - Making the spec as open as possible can hopefully speed up useability

• How do we decide if this effort is providing a value to the community?
 - Inertia from participants, adoption in products
 • Standardization coalesces
 • Adoption in custom/’contained’ interfaces
 • Moving to interoperable interfaces between various die
The basic idea

• Blast from the past – use simple CMOS IO to communicate

• We stopped using these when SERDES simplified board routing (less traces=less $$)

• Keeping everything on a laminate keeps things simple
 – More routing traces than a board
 – Less ESD requirements

• Make an interface that works on a cheap laminate or a fancy silicon based interconnect
 – Enable compatibility where we can

BoW Intro:

• High level proposed solution:
 - Simple source synchronous DDR interface
 • Clock adjust needed for DDR
 - Non Terminated (Termination may be ok, just adds power at lower rates)
 - 1-4 Gbps (or more?)
 - Low overhead IO cell (limited ESD)
BoW Extensions:

- Data Integrity / Power functions – need to discuss
 - ECC – How critical is BER? How much does interface spend vs.
 - DBI – is power worth the pins?

- Extension Mode 2: Bow-Fast
 - Higher speed uses optional termination (~2-3x rate), minor impact on power

- Extension Mode 3: Bow-Turbo
 - Add potential bidirectional feature – implemented in the IO cell
 - Hybrid circuit – can be implemented in multiple ways (examples from BaseT)
Proposal for dart throwing

<table>
<thead>
<tr>
<th>Function</th>
<th>Pins</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX Data</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Data Clock</td>
<td>2</td>
<td>Differential</td>
</tr>
<tr>
<td>Parity</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Function</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Bus Inversion</td>
<td>~19% power savings</td>
</tr>
<tr>
<td>Parity</td>
<td>Not needed if ECC</td>
</tr>
<tr>
<td>FIFO Reset</td>
<td>Helpful for control/init</td>
</tr>
<tr>
<td>ECC</td>
<td>Error detect/correct</td>
</tr>
<tr>
<td>Sideband</td>
<td>Various calibration/etc</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>Pins</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX Data</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Data Clock</td>
<td>2</td>
<td>Differential</td>
</tr>
<tr>
<td>Parity</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Function</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Bus Inversion</td>
<td>~19% power savings</td>
</tr>
<tr>
<td>Parity</td>
<td>Not needed if ECC</td>
</tr>
<tr>
<td>FIFO Reset</td>
<td>Helpful for control/init</td>
</tr>
<tr>
<td>ECC</td>
<td>Error detect/correct</td>
</tr>
<tr>
<td>Sideband</td>
<td>Various calibration/etc</td>
</tr>
</tbody>
</table>

Minimum streaming IF
Datarate discussion

• Current proposal: Per databit wire configurable from 1-4Gbps

• What datarates make the most sense for the standard?
 – 1-2Gbps (AHB) limits usefulness on laminate (too many wires to move reasonable bandwidth
 – Configurable datarate including 1-2 Gbps could enable AHB compatibility
 – >5Gbps may require termination

• Having a settable datarate with simple divides maximizes compatibility
 – For 4, 2, 1 Gbps -> simple dividers
Voltage discussion

• Simple, single voltage based approach – challenge is what voltage to choose?

• 1.2 is HBM legacy, costs power
• 0.9V is often available, decent power, interoperable with AIB*
• 0.75 / 0.8 often available as well, popular chipllevel VDD values
• Lower voltages will have lower power, too low will be a challenge for IO design
Power (energy)

- Simple energy calculation
 - Pathological worst case w/DBI
 - 0.4
 - No on chip routing from IO to bump assumed
 - Add 0.1 – 0.25 pJ depending on length
 - Termination +~0.2 pJ low speed, less at high speed

Parallel Interface IO Power vs Package Routing Length

- Total power at 1.2V
- Total power at 1.0V
- Total power at 0.8V

Consume. Collaborate. Contribute.
Operation Modes BoW on Organic Package Substrate

• BOW Basic
 – Unterminated lanes → up to 5 Gbps/wire
 – Source Synchronous with clock alignment

• BOW Fast
 – Terminated lanes → up to 12Gbps/wire
 – Source Synchronous with clock alignment

• BOW Turbo
 – Simultaneous Bidirectional → both directions
 – Terminated lanes → up to 2x12Gbps/wire
 – Source Synchronous with clock alignment

Note: Bidirectional signaling been around for decades, in all phone lines, and at multi-Gig in BASE-T PHYs since late 1990s. The cancellation requirement for a link with small loss is fairly relaxed.
AQlink Demo Silicon in GF 14nm

<table>
<thead>
<tr>
<th></th>
<th>LR: M1 ↔ S2</th>
<th>MR: M2 ↔ S1</th>
<th>SR: M3 ↔ S0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traces on test chip</td>
<td>2mm</td>
<td>10mm</td>
<td>25mm</td>
</tr>
</tbody>
</table>

AQlink External Ports

- One port per AQlink Quad core is an external port. Each external port trace:
 - 10mm package
 - 30mm board (1/2 package loss)
 → Effective 10+15 =~ 25mm package
 → Loopback trace = 2x 25 = 50mm

- A differential external loop back operates error free up to ~25Gbps per direction (BER ~ 1E-15)

- If loopback connected in single-ended fashion, the link operates error free up to ~15Gbps/direction (BER ~ 1E-15)

- To provide further margin, and simplify the Phase alignment circuitry, maximum Bow-Turbo speed limited to 12Gbps/direction
AQlink Internal Eye for Bidirectional 28Gbps (>1E11 bits per point)

2mm: SR Channel

10mm: MR Channel

25mm: LR Channel
A Bow-Turbo Core is configurable to be backward compatible to:
- BoW-Fast
 - by disabling Tx or Rx per lane
- BoW-Basic
 - by disabling Tx or Rx per lane
 - disconnecting the line terminations
BoW Bump Map Slice

16 Data + 2 Clock
- 16-bit wide parallel port
- Configurable to be Backward compatible with conventional parallel CMOS IOs
- Slice with same circuitry & layout but different RDL comes in 2 bump maps to create efficiency in building larger BoW modules

Vertically stackable to increase throughput per die edge
- 1 Stack → 16x2x16Gbps/pad=512Gbps
- 2 Stack → 16x2x16Gbps/pad=1024Gbps

Optional ECC
- Optional bump can be added for an ECC bit per 16 data group to provide error correction capability for BER<1E-30
Sample BoW Staggered Bump Map – Terabit Core

- Terabit Module has 48 data pads:
 - 48x2x10.5Gbps/pad=~1Tbps

- A single bump map can be used for Basic/Fast/Turbo
 - Important for backward compatibility

- Two clock ports per 16 ports
 - Configurable to be clock output or clock input pads when connected to non-Turbo interface (Tx or Rx only)

- Optional ECC
 - Option column to add one ECC bit per 16 data group at the edge of the Terabit Core bump map to provide error correction capability if BER<1E-20
Assuming 80% data activity rate → Baud*0.4

Power efficiency calculated for data from the edge of the interface core on side to edge of interface core on the other side.

Power Efficiency of BoW Fast/Turbo

Parallel Interface IO Power vs Package Routing Length

- BoW.Fast/Vdd=0.8V
- BoW.Fast/Vdd=1V
- Turbo/Vdd=0.8V
- Turbo/Vdd=1V
BoW-Turbo Interface Performance Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Supply Voltage</td>
<td>0.75V-1.2V (+/-5%)</td>
</tr>
<tr>
<td>Throughput/Trace (Max)</td>
<td>24Gbps (2x12Gbps)</td>
</tr>
<tr>
<td>Power Efficiency</td>
<td>0.75 pJ/bit (0.8V/30mm)</td>
</tr>
<tr>
<td>Package Trace length (Max)</td>
<td>50mm (Package Substrate: GZ41)</td>
</tr>
<tr>
<td>Latency</td>
<td><2ns</td>
</tr>
<tr>
<td>Pad Pitch</td>
<td>130um</td>
</tr>
<tr>
<td>Terabit IP Core Dimension</td>
<td>Chip Edge: 1100um. Height:1000um</td>
</tr>
<tr>
<td>Power/Area for 1Tbps Throughput</td>
<td>750mW/1.1mm^2</td>
</tr>
<tr>
<td>BER</td>
<td><1E-15 (No ECC) / <1E-20 (with ECC)</td>
</tr>
<tr>
<td>ESD / CDM protection</td>
<td>400V/100V</td>
</tr>
<tr>
<td>Silicon Proven</td>
<td>GF 14nm</td>
</tr>
</tbody>
</table>
BoW Turbo Spec Summary

- Over 1Tbps/mm chip edge over organic substrate & 130um pad pitch
 - Throughput per port of at least 2x10.5Gbps (Max: 2x12Gbps)
 - Small per port area of <0.018mm²
- Less than 1pJ/bit at Vdd=0.8V and trace length=50mm
- Single power supply that is compatible with synthesized logic core
- Concept proven in 14nm Silicon
- Backward compatible with BoW Basic/Fast die-die interfaces
 - Can use matching bump map as Bow Basic/Fast
 - A Chiplet with Bow Turbo interface can interoperate with other Chiplets using other BoW interfaces
Test Options

• Need discussion to find suitable test solutions
 – Calibration?
 – 1149.1 legacy
 – IEEE 1500 (HBM type systems)
 – Could define at speed / functional interop test if needed
Call for Volunteers

• We need your help to define a generally useful and interoperable interface

• What do we need?
 – Good ideas on what applications the BoW makes sense for
 – SI/PI input for various options
 – Defining test for interface
Thank You
AQlink External Eye Diagrams

25Gbps

28Gbps

ESD Measurements

- ESD performance measured for single-duplex mode on a 12mm x 14mm package

<table>
<thead>
<tr>
<th>ESD Test Performed</th>
<th>Description</th>
<th>Test Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBM all pins</td>
<td>+/-250V (Spec)</td>
<td>Pass</td>
</tr>
<tr>
<td>HBM all pins</td>
<td>+/-400V</td>
<td>Pass</td>
</tr>
<tr>
<td>CDM all pins</td>
<td>+/-50V (Spec)</td>
<td>Pass</td>
</tr>
<tr>
<td>CDM all pins</td>
<td>+/-100V</td>
<td>Pass</td>
</tr>
</tbody>
</table>
Nominal Vdd range = 0.75V - 0.85V (+/-3% tolerance)