

BoW: Basic, Fast, Turbo Die-to-Die Open Interface Solutions

ODSA Project Workshop March 28, 2019 Mark Kuemerle Ramin Farjad

Interface standardization

- Chiplet based systems will likely have a variety of different interfaces moving forward
 - Fast Serial interfaces with some compatibility to existing standards (eg 112GXSR)
 - Novel USR interfaces driven by an ecosystem (eg. Kandou/Marvell)
 - Simple interfaces for moving reasonable bandwidth between die from less cutting edge nodes

Does it make sense?

- Does it make sense to have another parallel standard?
 - AIB is a good starting point, currently has datarate and footprint definitions that limit use on a laminate
 - Making the spec as open as possible can hopefully speed up useability
- How do we decide if this effort is providing a value to the community?
 - Inertia from participants, adoption in products
 - Standardization coalesces
 - Adoption in custom/'contained' interfaces
 - Moving to interoperable interfaces between various die

The basic idea

- Blast from the past use simple CMOS IO to communicate
- We stopped using these when SERDES simplified board routing (less traces=less \$\$)
- Keeping everything on a laminate keeps things simple
 - More routing traces than a board
 - Less ESD requirements
- Make an interface that works on a cheap laminate or a fancy silicon based interconnect
 - Enable compatibility where we can

BoW Intro:

- High level proposed solution:
 - Simple source synchronous DDR interface
 - Clock adjust needed for DDR
 - Non Terminated (Termination may be ok, just adds power at lower rates)
 - 1-4 Gbps (or more?)
 - Low overhead IO cell (limited ESD)

BoW Extensions:

- Data Integrity / Power functions need to discuss
 - ECC How critical is BER? How much does interface spend vs.
 - DBI is power worth the pins?
- Extension Mode 2: Bow-Fast
 - Higher speed uses optional termination (~2-3x rate), minor impact on power
- Extension Mode 3: Bow-Turbo
 - Add potential bidirectional feature implemented in the IO cell
 - Hybrid circuit can be implemented in multiple ways (examples from BaseT)

Proposal for dart throwing

Function	Pins	Notes
RX Data	32	
Data Clock	2	Differential
Parity	1	

Minimum streaming IF

Function	Pins	Notes
TX Data	32	
Data Clock	2	Differential
Parity	1	

Other Function	Notes
Data Bus Inversion	~19% power savings
Parity	Not needed if ECC
FIFO Reset	Helpful for control/init
ECC	Error detect/correct
Sideband	Various calibration/etc

Other Function	Notes
Data Bus Inversion	~19% power savings
Parity	Not needed if ECC
FIFO Reset	Helpful for control/init
ECC	Error detect/correct
Sideband	Various calibration/etc

Datarate discussion

- Current proposal: Per databit wire configurable from 1-4Gbps
- What datarates make the most sense for the standard?
 - 1-2Gbps (AHB) limits usefulness on laminate (too many wires to move reasonable bandwidth
 - Configurable datarate including 1-2 Gbps could enable AHB compatibility
 - >5Gbps may require termination
- Having a settable datarate with simple divides maximizes compatibility
 - For 4, 2, 1 Gbps -> simple dividers

Voltage discussion

- Simple, single voltage based approach challenge is what voltage to choose?
- 1.2 is HBM legacy, costs power
- 0.9V is often available, decent power, interoperable with AIB*
- 0.75 / 0.8 often available as well, popular chiplevel VDD values
- Lower voltages will have lower power, too low will be a challenge for IO design

Power (energy)

- Simple energy calculation
 - Pathological worst case w/DBI
 - 0.4
 - No on chip routing from IO to bump assumed
 - Add 0.1 0.25 pJ depending on length
 - Termination +~0.2 pJ low speed, less at high speed

Operation Modes BoW on Organic Package Substrate

- BOW Basic
 - Unterminated lanes → up to 5 Gbps/wire
 - Source Synchronous with clock alignment
- BOW Fast
 - Terminated lanes → up to 12Gbps/wire
 - Source Synchronous with clock alignment
- BOW Turbo
 - Simultaneous Bidirectional → both directions
 - Terminated lanes → up to 2x12Gbps/wire
 - Source Synchronous with clock alignment

←Receive data

Tx

Note: Bidirectional signaling been around for decades, in all phone lines, and at multi-Gig in BASE-T PHYs since late 1990s. The cancellation requirement for a link with small loss is fairly relaxed

AQlink Demo Silicon in GF 14nm

Consume. Collaborate. Contribute.

AQlink External Ports

Consume. Collaborate. Contribute.

- One port per AQlink Quad core is an external port. Each external port trace:
 - 10mm package
 - 30mm board (1/2 package loss)
 - → Effective 10+15=~25mm package
 - → Loopback trace=2x25=50mm
- A differential external loop back operates error free up to ~25Gbps per direction (BER~1E-15)
- If loopback connected in single-ended fashion, the link operates error free up to ~15Gbps/direction (BER~1E-15)
- To provide further margin, and simplify the Phase alignment circuitry, maximum Bow-Turbo speed limited to 12Gbps/direction

AQlink Internal Eye for Bidirectional 28Gbps (>1E¹¹ bits per point)

Top Level View: Bow-Turbo Backward Compatible to Fast/Basic

- A Bow-Turbo Core is configurable to be backward compatible to
- BoW-Fast
 - by disabling Tx or Rx per lane
- BoW-Basic
 - by disabling Tx or Rx per lane
 - disconnecting the line terminations

BoW Bump Map Slice

16 Data + 2 Clock

16-bit wide parallel port
Configurable to be Backward compatible with

conventional parallel CMOS IOs

Slice with same circuitry & layout but different RDL comes in 2 bump maps to create efficiency in building larger BoW modules

Vertically stackable to increase throughput per die edge

1 Stack \rightarrow 16x2x16Gbps/pad=512Gbps

2 Stack→16x2x16Gbps/pad=1024Gbps

Optional ECC

Optional bump can be added for an ECC bit per 16 data group to provide error correction capability for BER<1E-30

Sample BoW Staggered Bump Map - Terabit Core

- Terabit Module has 48 data pads:
 - -48x2x10.5Gbps/pad=~1Tbps
- A single bump map can be used for Basic/Fast/Turbo
 - Important for backward compatibility
- Two clock ports per 16 ports
 - Configurable to be clock output or clock input pads when connected to non-Turbo interface (Tx or Rx only)
- Optional ECC

~1000um

 Option column to add one ECC bit per 16 data group at the edge of the Terabit Core bump map to provide error correction capability if BER<1E-20

Consume, Collaborate, Contribute,

Power Efficiency of BoW Fast/Turbo

- Assuming 80% data activity rate → Baud*0.4
- Power efficiency calculated for data from the edge of the interface core on side to edge of interface core on the other side

BoW-Turbo Interface Performance Specifications

Parameter	Parameter
Single Supply Voltage	0.75V-1.2V (+/-5%)
Throughput/Trace (Max)	24Gbps (2x12Gbps)
Power Efficiency	0.75 pJ/bit (0.8V/30mm)
Package Trace length (Max)	50mm (Package Substrate: GZ41)
Latency	<2ns
Pad Pitch	130um
Terabit IP Core Dimension	Chip Edge: 1100um. Height:1000um
Power/Area for 1Tbps Throughput	750mW/1.1mm^2
BER	<1E-15 (No ECC) / <1E-20 (with ECC)
ESD / CDM protection	400V/100V
Silicon Proven	GF 14nm

BoW Turbo Spec Summary

- Over 1Tbps/mm chip edge over organic substrate & 130um pad pitch
 - Throughput per port of at least 2x10.5Gbps (Max: 2x12Gbps)
 - Small per port area of <0.018mm²
- Less than 1pJ/bit at Vdd=0.8V and trace length=50mm
- Single power supply that is compatible with synthesized logic core
- Concept proven in 14nm Silicon
- Backward compatible with BoW Basic/Fast die-die interfaces
 - Can use matching bump map as Bow Basic/Fast
 - A Chiplet with Bow Turbo interface can interoperate with other Chiplets using other BoW interfaces

Test Options

- Need discussion to find suitable test solutions
 - Calibration?
 - 1149.1 legacy
 - IEEE 1500 (HBM type systems)
 - Could define at speed / functional interop test if needed

Call for Volunteers

 We need your help to define a generally useful and interoperable interface

- What do we need?
 - Good ideas on what applications the BoW makes sense for
 - SI/PI input for various options
 - Defining test for interface

Thank You

AQlink External Eye Diagrams

ESD Measurements

• ESD performance measured for single-duplex mode on a 12mm x 14mm package

ESD Test Performed	Description	Test Status
HBM all pins	+/-250V (Spec)	Pass
HBM all pins	+/-400V	Pass
CDM all pins	+/-50V (Spec)	Pass
CDM all pins	+/-100V	Pass

AQlink Measured Power Efficiency (Quad) TT15 part

POWER EFFICIENCY (mW/Gbps)

Nominal Vdd range = 0.75V - 0.85V (+/-3% tolerance)