

OCP-ACS Door Heat Exchanger & Similar Efforts

John Fernandes & Cheng Chen Thermal Engineers, Facebook

Rack & Power

PLATINUM

Agenda

- OCP ACS Door Heat Exchanger
 - Status / specification \bigcirc
 - Get involved! 0

Air-Assisted Liquid Cooling

Case Study

Open. Together.

RACK & POWER

OCP-ACS Door Heat Exchanger

Rack & Power

PLATINUM[™]

Door HX Work Stream

In-scope activities

- Design specific to Open Rack only
- Operating conditions and parameters
- Metrology of heat extraction performance
- Definition of different solutions
 - Data centers equipped with facility water \bigcirc
 - Data centers employing free-air cooling only \bigcirc

Door HX mounted to ORv2

RACK & POWER

Overview of Solutions

Data Center Design

Facility Water

Hot air to cool liquid

Hot liquid/air to cool liquid

RACK & POWER

Free-Air Cooling

Hot liquid to cool air

Overview of Solutions

Environmental & Regulations

DC Environment

RACK & POWER

Monitoring & Control

Reliability & Quality

	-
1	

Generation	n Frame Height, H (mm)	
V2	2163.7	
V3	2230.0	

* *Maximum recommended value*

Performance / Metrology

0

0

 \bigcirc

0

- For active variant, N+1 rotor redundancy is a must
- Face area of heat exchanger within supporting frame should be maximized for performance and minimal back-pressure
- Low air-side pressure drop to minimize impact to server fans \bigcirc
- ΔP of passive cooler $\leq 15Pa$ at rated air flow
- Total power consumption should be $\leq 2\%$ of rated heat rejection capacity \bigcirc
- Low water-side pressure drop to minimize impact to facility
- ΔP of complete cooling assembly ≤ 100 kPa at rated coolant flow rate 0
- Coolant supply pressure: ≤ 600 kPa (nominal); ≤ 1000 kPa (max. allowable) \bigcirc

RACK & POWER

Reliability & Quality

PRESSURE / LEAK TESTING

Checks at manufacturer (required) 0

Complete assembly pressurized with Nitrogen to 1.5x max. allowable \bigcirc Duration (minutes) 40

720

- Checks at integrator or end-user (recommended) 0
- Leak detection in operation (recommended) 0

AIRFLOW SEALING

Sealing of adapter frame/door to rack; within rack is equally critical 0

RACK & POWER

Allowable Drop in Pressure

≤ 3% ≤ 10%

Get Involved!

- Bi-weekly calls: Thursdays at 9am PST
 - Link to call: https://global.gotomeeting.com/join/600541373 \bigcirc
- Working towards a formal specification for submission to IC

Useful information

Project lead: Jacob Na, Facebook (jacob.na@ocproject.net) ACS wiki : <u>https://www.opencompute.org/wiki/Rack %26 Power/Advanced Cooling Solutions</u> ACS mailing list: <u>https://ocp-all.groups.io/g/OCP-ACS</u> ACS Door HX mailing list: <u>https://ocp-all.groups.io/g/OCP-ACS-Door-Heat-Exchange</u>

Air-Assisted Liquid Cooling

Brief Overview

Closed-loop solutions to enable support of higher-power components in

Case Study

Rack Level Assembly

• Closed-loop solutions for AI/ML GPU rack

Without facility water supply

CDU RDHx 111) **GPU Shelf**

Thermal Performance

4x GPU shelves (32x GPUs) per rack

Capable of supporting +50% power than original air-cooled solution

Cold plate contributes majority of

thermal resistance

Comments

- AALC can potentially extend air cooling limit in the absence of facility water supply
- Operational airflow and fan power consumptions can become much lower than traditional air-cooled systems
- schemes
 - Fewer chips/systems → higher cooling limit 0

Rack-type solution can be adjusted for different chassis population

Open. Together.

OCP Regional Summit 26–27, September, 2019

