OCP Accelerator Module and The Infrastructure
ODSA Project Workshop
March 28, 2019
Outline

• Motivation
• Approach
• Examples
• Requesting Participation and Feedback

Motivation
AI’s rapid evolution is producing an explosion of new types of hardware accelerators for Machine Learning (ML) and Deep Learning (DL)
Varied Module and System Form Factors

Different Implementations
Targeting Similar Requirements!
Logical Components for AI Hardware System
Facebook Big Basin System

Baseboard on sliding tray

IO board
Baseboard
Midplane board

Big Basin Rack View

- 2S server Tioga Pass as head node
- Open Rack v2, 12.6kw
- 4 Big Basin per Rack
Facebook Inference/Video Accelerator Common System

Inference Module
- Single M.2
- Dual M.2

Carrier Card
- Up to 12x single / 6x dual M.2

Yosemite V2
- 2x Twin Lakes with 2x carrier cards

Consume. Collaborate. Contribute.
Facebook Training System

8* Socket system with 8* Accelerators

8* OCP Accelerator Modules

Varied Module and System Form Factors
Common Requirements for Accelerator System

- Flexibility
- Robustness & Serviceability
- Configuration, Programming, & Management
- Power & Cooling
- Inter-module Communication to Scale Up
- Input / Output Bandwidth to Scale Out
“If you want to go Fast, go Alone;
If you want go Far, go Together”

We have done Fast for Short-term result;

It is time to go Far at OCP for Long-term gain!
We Started from OAM.
OCP Accelerator Module (OAM) Spec

- 102mm x 165mm Module Size
- With two high-speed Mirror Mezz connectors
- 12V and 48V input DC Power
- Up to 350w (12V) and up to 700w (48V) TDP
 - Up to 450W (air-cooled) and 700W (liquid-cooled)
- Support single or multiple ASIC(s) per Module
- Up to eight x16 Links (Host + inter-module Links)
 - Support one or two x16 High speed link(s) to Host
 - Up to seven x16 high speed interconnect links
- Up to 8* Modules per Baseboard
- System management and debug interfaces
NEW PROJECT

OCP ACCELERATOR MODULE

facebook
intel
XILINX
Qualcomm
habana
Bittware
molex company
NVIDIA
inspur
Lenovo
Google
AMD
IBM
Tencent
Alibaba Group
wiyynn
molex
QCT
HUAWEI
GRAPHCORE
OAM Power

- Support both 12V and 48V as input
- 12V to support up to 350w TDP
- 48V to support up to 700w TDP

<table>
<thead>
<tr>
<th>Power Rail</th>
<th>Voltage Tolerance</th>
<th># of pins</th>
<th>Current Capability</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>P12V</td>
<td>11V min to 13.2V max</td>
<td>27</td>
<td>27A (when at 11V)</td>
<td>Normal Power</td>
</tr>
<tr>
<td>P12V Mandatory</td>
<td>11V min to 13.2V max</td>
<td>5</td>
<td>5A (when at 11V)</td>
<td>Normal Power</td>
</tr>
<tr>
<td>P48V</td>
<td>44V min to 60V max</td>
<td>16</td>
<td>16A (when at 44V)</td>
<td>Normal Power</td>
</tr>
<tr>
<td>P3.3V</td>
<td>3.3V±10% (max)</td>
<td>2</td>
<td>2A</td>
<td>Normal Power</td>
</tr>
</tbody>
</table>
Interconnect end-to-end Channel Loss

- The module interconnection channel total insertion loss @28Gbps should not be over -8dB
- System baseboard IL budget = Die to Die IL from each OAM supplier – 16dB
System Management/Debugging

- Sensor reporting
- Error monitoring/Reporting
- Firmware Update
- Power Capping
- FRU Information
- IO Calibration
- JTAG/I2C UART interfaces for debugging
Overview OAM: Mechanical/Thermal

Top stiffener
Example

Example die

OAM PCB

Bottom stiffener

TOP VIEW

BOTTOM VIEW

Mech Requirements – OAM Bottom Stiffener

- 5±0.15mm stiffener as required by connector
- 3mm alignment pins that extend 10mm below OAM PCB surface
- Die spring (rectangular profile coil spring) to provide unmate force
- EMI gaskets for grounding to baseboard
Mech Requirements – System Baseboard

- Component KOZ 103 x 166mm: 0mm height
- Cross-hatched locations: Grounding Pads
- EMI grounding pads located north and south of the connectors
- 4x Mounting Holes for M3.5 screws
- 2x SMT nuts used as alignment features
Mech Recommendations – Alignment Features

- Notch provides orientation and keying (OPTIONAL, BUT RECOMMENDED)

SMT nuts on baseboard

Molex Mirror Mezz Connector Gatherability: 0.76mm
Thermal Requirements – Operation Environment

- Ambient Temp: 5°C to 35°C
 - Approach Temp: 5°C to 48°C
- Altitude: sea level to 6000ft
- Humidity: 20% to 90%
- Cold boot temp limit: TBD
- Storage temp: -20°C to 85°C

- No ambient temp compensation/de-rating for altitude
Now we have an industry standard OAM spec, what's the next?
We need an Open Accelerator Infrastructure
Hierarchical **Base Specification** for OAI

Well-defined boundaries

Fostering Innovation

- OAM
- UBB (Interconnect Topology)
- Switch Board
- SCM
- Tray
- Chassis

- Power and Cooling
- Mechanical
- Electrical
- Security & Management

Designs and **Products** may be compliant to any or all specifications
The Universal Baseboard (UBB)
Different Neural Networks and Frameworks for Model or Data Parallelism

Benefit from different Interconnect Topologies
Universal Baseboard (UBB)

• Consider a Grid of Planar OAM sites
• Standard Volumetric
• Protocol Agnostic Interconnects

• *Wires are Wires!*
With different interconnect topologies

A Grid of interconnected OAMs,
Max Bisection BW
One Hop Away
Ready for Expansion

With six inter-OAM Links
and one Host Link

With seven inter-OAM Links
and one Host Link

Six inter-module Links may create a 3D Mesh or Torus

OAM Topology Examples
Fully Connected w/ 7 links

OAM Topology Examples
Almost Fully Connected w/ 6 links
OAM Topology Examples
Rings w/ 4 links

Port 4/5/6/R for AISC which has 4 links on Conn1 Only
OAM Topology Examples
Hybrid Cube Mesh w/ 4 links

Port 4/5/6/R for AISC which has 4 links on Conn1 Only
OAM Topology Examples

Hybrid Cube Mesh w/ 6 links
Summary for OAI/OAM

- Rev 0.85 of the OAM spec is available in OCP Wiki
- Join the Project and further develop interoperable Modules for an Open Accelerator Infrastructure (UBB, PSB, SCM, Tray, Chassis…)
- We invite you to join the OAI subgroup for further collaboration:

Register for the Mailing List:
https://ocp-all.groups.io/g/OCP-OAI

Wiki under OCP Server Project:
https://www.opencompute.org/wiki/Server/OAI

Accelerator Form Factors

- Different Form Factors
 - PCIe CEM
 - OAM
 - M.2/Dual M.2
 - OCP NIC
 - Others

- Different Accelerator Targets
 - Training
 - Inference
 - Video
 - Others