
Time Appliances Project

OCP 2022 Tech Talks

TAP 2022 Tech Talks

08:30 am	OCP TAP	Opening: TAP Vision and Updates	
09:00 am	Kevin Stanton @ Intel	Time Sync everywhere: Wi-Fi and compute platform	
09:20 am	Dotan Levi @ NVIDIA	Time Sync in DCs: What's Next?	
09:40 am	Julian St. James @ Meta	Time Drive M.2	
10:00 am	Anand Ram @ Calnex	TAP Instrumentation	
10:20 am	Lasse Johnsen @ Timebeat	Time-as-a-Service	
10:40 am	Dhiman Chowdhury @ Trimble	GNSS Receiver	
11:00 am	Ullas Kumar @ Rakon	Choices for 5G DC Sync	
11:20 am	OCP TAP	Closing: Suggestions and Opportunities	

TAP

What is it all about?

TAP Knowledge Sharing

Some examples:

Clock and Oscillator Statistics and Characterization Techniques Marc A. Weiss, Ph.D.

Chip Scaled Atomic Clocks John Kitching, Ph.D.

Practical Use Cases of Sync Clocks Georgi Chalakov

White Rabbit Maciej Lipinski, Ph.D.

Precision Time Applications Dan Biederman

Measuring and Monitoring Options for Time Sync Infrastructures Heiko Gerstung

Using LEO Satellites for Time Sync Tyler Reid, Ph.D.

PCIe PTM: Timing in the Last Inch Christopher Hall

GNSS Timing Samuli Pietila

Computer Timekeeping and Sync Kevin Stanton, Ph.D.

Data Center PTP Profile Michel Ouellette

TAP

Open Specifications Reference Designs

What has been done so far?

Open Time Server DC PTP Profile

Oscillator Requirements

Oscillator Workstream

Goal: simplify oscillator selection for predictable PTP performance

OCP-TAP Oscillator Classes

- Performance requirements
- Test methodologies

We welcome your contribution opencompute.org/wiki/Time_Appliances_Project

Oscillator Class G1 - Grandmaster

Source

Requirements Document for OCP-TAP
Oscillator Classes

https://www.opencompute.org/documents/ ocp-tap-oscillator-spec-jan-8-2022-docx-pdf

1 Requirements for Class G1 Oscillator, Normative

Table 1. Standard data-center environment without synchronous Ethernet, see use case GM-A

Parameter	Symbol	Requirement
Ambient temperature (pick 1)	T_a1	-10°C to 70°C
	T_a2	0°C to 45°C
g-sensitivity	F_g	< 0.5 ppb/g
Frequency stability over temperature	F_stab	≤ ±0.5 ppb¹
Frequency stability over temperature slope	dF/dT	≤ ±7 ppt/°C²
Allan deviation, Tau=100s	ADEV	≤9e-12
Daily aging	F_1d	≤ ±0.035 ppb/day³
Training time before entering holdover	t_h	< 12 hours
24-hour holdover	F_hold_24h	≤ ±1.4 μs in 24 hr⁴
1 hour holdover	F_hold_1h	≤ ±250 ns in 1 hr⁴
Jitter	J_pp	≤1 ns peak-peak⁵
Additional design requirements	ADR	List manufacturer recommendations ⁶

What's coming up?

Precision PTP
Time Servos
APIs

Instrumentation & Measurement

What's Coming Up for TAP

Security, Integrity and Reliability

Standardized Sync Database

Precision Time in VMs

Time aware Networks

Time Sync in Existing DC Networks

Improved Holdover NIC

Fault Detection and Recovery

Precision Time over PCIe

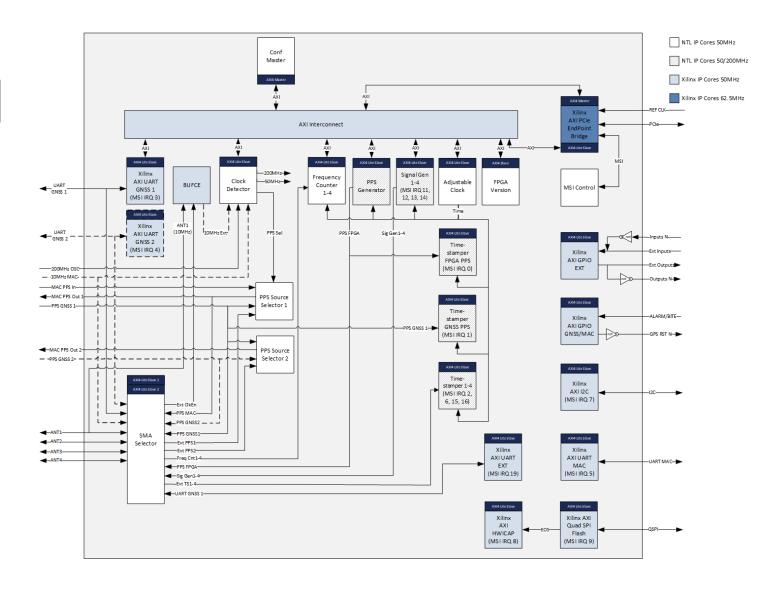
Open GNSS Receiver

Open MAC

Precision Time over USB/Wireless

. . .

What's Coming Up for TAP


- 1. Handling the challenges in existing DC networks
 - Noisy neighbor, Pause messages, Asymmetry in Round Trips, Route changes
 - What should be balance between oscillator performance and network fidelity
 - The future of PTP compliant NICs and Switches
- 2. Further Adaption of Precision Time Sync (Horizontal and Vertical)
 - More DCs, Reaching to End Users
 - Precision Time and Userland
 - Precision Time and Peripherals

Time Card

- An update of the latest open-source effort
- Open sourcing of the time keeping logic commenced

Open-Source Time Card FPGA

November 2020

June 2022

September 2022

1st version of Time Card FPGA *

- Not an Open-Source design
- Binaries can be used free of charge

Base-system FPGA **

Open-Source design

- ☐ Open-Source NetTimeLogic IP cores
- Documentation on GIT for
 - each IP core
 - the overall design
- □ .tcl scripts for
 - project creation
 - project implementation
 - binaries generation

Extended Base-system FPGA

- ☐ Open-Source design incl. PPS and ToD
- ☐ FPGA can be synchronized to GNSS input, w/o software dependence

 $\textcolor{red}{\star} \quad \underline{\text{https://github.com/opencomputeproject/Time-Appliance-Project/tree/master/Time-Card/FPGA/Binary}}$

** https://github.com/opencomputeproject/Time-Appliance-Project/tree/master/Time-Card/FPGA/Open-Source

NetTimeLogic GmbH - contact@nettimelogic.com

Time Card Duo

- Dual source and independent GNSS, establishing footprint for evaluation of GNSS solutions
- Placement of MAC towards center of mass
- Improved signal integrity on Input/Output connectors
- Added dual PPS In/Out
- Added PMOD connector for debugging and auxiliary connections

