Eliminating the Risk of Malicious Counterfeit Chiplets

Scott Best, Sr. Director Rambus Security

sbest@cryptography.com
Rambus solutions serving data-intensive markets

- DDR5 RCD, TS, SPD HUB
- DDR4 RCD, DB
- HBM3
- GDDR6
- PCIe 4/5/6
- CXL 2/3

Chips (Product Sales)
- Memory Interface Chips

Silicon IP (IP Licenses)
- Interface IP: Memory and SerDes, PHYs and Controllers
- Security IP: Secure Silicon, Secure supply-chain

Data Center
Automotive
5G/Edge
Government
IoT
The Problem

- High-mix heterogeneous SiPs are the ideal breeding ground for malicious “hardware trojan” chiplets

- The overall “quantifiable assurance” of your SiP is only as good as the least secure chiplet

- One of the chiplets in the SiP must be responsible for verifying the authenticity of every other chiplet
 - Good choice for this: the chiplet with the root-of-security (i.e., the one which is responsible for overall secure-boot)
 - See: Caliptra specification for minimum requirements
How to Verify Authenticity

● Generally involves the concept of “challenge response”
 ○ An authentic chip has a secret that only an authentic chip should be able to prove that it knows
Challenge/Response is tricky

- Testing whether the chiplets in your SiP know the secrets they should know is a good start.

- However … if an adversary can learn these secrets, they can manufacture a clone that impersonates authentic chiplets.
How to protect on-chip secrets

- First question: how should secrets be stored on chip?

- Ideally, the secret is split into several pieces ("keysplits")
 - Some in the netlist (can be RE’d, but it’s difficult)
 - Some in the embedded NVM (easiest attack: re-enable mfg mode)
 - Maybe a PUF? Data disappears when the chip is powered off.
 - All of those, combined in a secure way, and only when needed
How to reveal on-chip secrets

- Second question … what makes a good C/R protocol?
 - Not all challenge response protocols are good ones…

- Reminder: the main thing preventing a malicious clone of a chiplet is knowledge of the Secret value
 - Assume your adversary will collect ~1M C/R pairs to learn what you’re doing, and (if possible) determine that Secret value
How to reveal knowledge of on-chip secrets

- Challenge/Response using crypto is (of course) a good idea, but everyday crypto can be attacked…

A well-known non-invasive attack called “power analysis side channel” can recover secret key material by carefully monitoring the crypto circuit’s power supply consumption.

Secure crypto operations that do not complete correctly become insecure.

Verifier

Encrypt/Sign this nonce

Prover

Enc(nonce,Secret)

Root of Security
How to safely reveal knowledge of on-chip secrets

- What’s needed for the prover is **tamper-resistant crypto**

 ![Diagram showing prover and verifier with encryption/signature operations](image)

- Tamper-resistance includes:
 - Countermeasures against power-analysis side channel
 - Countermeasures against fault attacks, both “glitch” and laser-fault
 - Countermeasures against “environmental attacks” (over/under voltage/clock)
Lastly … should the Prover trust the Verifier?

- Mutual authentication prevents “harvesting” of Prover's secret
- The Verifier knows (at least something about) the correct response before Prover responds
 - Before the Prover releases the response, it waits until the Verifier sends proof that it knows it already
Summary

- High-mix heterogeneous SiPs are the ideal breeding ground for malicious “hardware trojan” chiplets
- One chiplet must be the Verifier, every other chip must be a Prover
- A Challenge/Response protocol is what binds Verifier and Prover
- Essential C/R ingredients:
 1. Many and varied keysplits
 2. Tamper-resistant crypto
 3. Mutual authentication