

Eliminating the Risk of Malicious Counterfeit Chiplets

Scott Best, Sr.Director Rambus Security

sbest@cryptography.com

Rambus solutions serving data-intensive markets

The Problem

- High-mix heterogeneous SiPs are the ideal breeding ground for malicious "hardware trojan" chiplets
- The overall "quantifiable assurance" of your SiP is only as good as the least secure chiplet

- One of the chiplets in the SiP must be responsible for verifying the authenticity of every other chiplet
 - Good choice for this: the chiplet with the root-of-security (i.e., the one which is responsible for overall secure-boot)
 - See: Caliptra specification for minimum requirements

How to Verify Authenticity

- Generally involves the concept of "challenge response"
 - An authentic chip has a secret that only an authentic chip should be able to prove that it knows

4

Challenge/Response is tricky

- Testing whether the chiplets in your SiP know the secrets they should know is a good start
- However ... if an adversary can learn these secrets, they can manufacture a clone that impersonates authentic chiplets

How to protect on-chip secrets

• First question: how should secrets be stored on chip?

- Ideally, the secret is split into several pieces ("keysplits")
 - Some in the netlist (can be RE'd, but it's difficult)
 - Some in the embedded NVM (easiest attack: re-enable mfg mode)
 - Maybe a PUF? Data disappears when the chip is powered off.
 - \circ $\,$ All of those, combined in a secure way, and only when needed

How to reveal on-chip secrets

- Second question ... what makes a good C/R protocol?
 - Not all challenge response protocols are good ones...

- Reminder: the main thing preventing a malicious clone of a chiplet is knowledge of the Secret value
 - Assume your adversary will collect ~1M C/R pairs to learn what you're doing, and (if possible) determine that Secret value

7

How to reveal knowledge of on-chip secrets

 Challenge/Response using crypto is (of course) a good idea, but everyday crypto can be attacked...

8

How to safely reveal knowledge of on-chip secrets

• What's needed for the prover is *tamper-resistant crypto*

- Tamper-resistance includes:
 - Countermeasures against power-analysis side channel
 - Countermeasures against fault attacks, both "glitch" and laser-fault
 - Countermeasures against "environmental attacks" (over/under voltage/clock)

Lastly ... should the Prover trust the Verifier?

• Mutual authentication prevents "harvesting" of Prover

- The Verifier knows (at least something about) the correct response before Prover responds
 - Before the Prover releases the response, it waits until the Verifier sends proof that it knows it already

Summary

- High-mix heterogeneous SiPs are the ideal breeding ground for malicious "hardware trojan" chiplets
- One chiplet must be the Verifier, every other chip must be a Prover
- A Challenge/Response protocol is what binds Verifier and Prover
- Essential C/R ingredients:
 - 1. Many and varied keysplits
 - 2. Tamper-resistant crypto
 - 3. Mutual authentication

