Computational Storage by FPGA
ODSA Data Accelerator Workshop

David McIntyre
Director Product Planning and Business Enablement
Samsung Device Solutions America
August 27, 2021
The Infinite Data Ocean
Our Mission

Oceans of data, but how to search effectively?

Data Search and Analytics: No Compromise

- Urgent
- Accurate
- Sustainable
- Results-driven

Scenario Planning
- Medical (Genomics)
- Fintech (Colo Trading)
- Cyberforensics (Security)
- Edge (AI Surveillance)
Today’s Compute and Storage Compromise

- **Latency**: Data transfer to cloud or on-prem host servers for all processing tasks
- **Restricted Bandwidth**: Network congestion to over-provisioned servers
- **Expense**: Cloud instances
- **Security and Privacy Issues**: Data exposure vulnerabilities and sharing across parties
- **Resource dependencies**: Misbalanced provisioning of compute and storage resources (see pic)

![Diagram of compute, network, and storage resources]

Performance Limit: Storage to Host Server Ratio
Computational Storage Resolution

- **Reduced Latency**: Bringing compute to the data for improved response times with data analytics.
- **CapEx and OpEx savings**: Less data center server resources required for reduced TCO.
- **Security and privacy compliance**: Localized data processing provides better protection and control.
- **Flexibility and scalability**: SmartSSD scale up based on customer application requirements.
Computational Storage Explained

- Improved Performance with local on-drive compute resources
- Minimal data movement required
- Secure data attributes
Computational Storage Deployments

Move Compute Closer to Storage

Current Compute/Storage Architecture

- Moving data between storage and host CPU creates performance bottlenecks for data-intensive applications

Computational Storage Architecture

- Data processed directly on the CSD => no large data transfers, faster time-to-insight
- Adding CSDs adds processing power and internal bandwidth => scalable acceleration

Deployment Examples

- Compute/Storage Server
- Smart Cache Layer
- Cloud to Edge compute

Image Source: SNIA

© 2021 SNIA Persistent Memory + Computational Storage Summit. All Rights Reserved.
Computational Storage Product Example

FPGA Accelerator, Flash Controller, 4GB DRAM and 4TB TLC NAND flash
- Peer-to-peer (P2P) communication enables unlimited concurrency

SSD-to-Accelerator data transfers use internal data path
- Save precious L2:DRAM Bandwidth (Compute Nodes) / Scale without costly x86 frontend (Storage Nodes)
- Avoid the unnecessary funneling and data movement of standalone accelerators
- FPGA DRAM is exposed to Host PCIe address space
- NVMe commands can securely stream data from SSD to FPGA peer-to-peer
SmartSSD® Drive Performance and Use cases

◆ Scalable Across Many Applications: Data at Rest and Inline

Database
SparkSQL with Parquet Data
- 5.3x overall performance improvement for heavy query
PostgreSQL 11
- 40x faster scan-heavy queries (7 -> 331 queries/hr)

Rich Media
H.264 Video Transcoding
- Multi-stream transcoding: 20% higher 1080p frame rate
- Offloading CPU workload: 87% lower CPU usage

Storage & Big Data Services
LZ4 Decompression Scale-out
- 3x decompression bandwidth, scales to 24 SmartSSD drives
MPU search Scale-out
- Same regex search time for 10PB as 4TB
Computational Storage and Security

Risks vs standard storage:
- The CSD can delete/add/modify data on the drive
- The CSD functionality can be programmed
- Virtualization

Risks vs external accelerator:
- Direct access to storage
- FPGA programming
- Access to network infrastructure (NVMe-oF)
- Decryption of data prior to processing

The CSD may perform security functions:
- **Authentication.** Host agent to CSD and CSD to host agent
- **Authorization.** Mechanisms for secure data access and permissions control
- **Encryption.** Mechanisms to perform computation on encrypted data that was not encrypted by the CSD. Mechanisms that exchange information necessary for the CSD to encrypt/decrypt data.
- **Auditing.** Mechanisms that allow for generating and retrieving of a secure log
Computational Storage and FPGA security

- FPGAs are SRAM based devices which are programmed by secure bit streams
 - Key is programmed via JTAG port
 - Bitstream in encrypted with design tools
 - FPGA identifies encrypt/no encrypt for field testing
- AES 256 secures bitstream programs
- Additional Security Measures
 - Design Region Isolation
 - JIT Partial Reconfiguration
 - SOC and Bus Isolation
 - PUF files for device dependency
 - E-fusing

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6849432
Computational Storage Summary

<table>
<thead>
<tr>
<th>Mission</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes</td>
<td>Requirements</td>
</tr>
<tr>
<td>- Urgent</td>
<td>Low Latency</td>
</tr>
<tr>
<td>- Accurate</td>
<td>Data Analytics Solutions</td>
</tr>
<tr>
<td>- Sustainable</td>
<td>Product Leadership</td>
</tr>
<tr>
<td>- Results</td>
<td>Performance Value</td>
</tr>
<tr>
<td>- Security</td>
<td>Data Protection</td>
</tr>
<tr>
<td>- Leadership</td>
<td>Innovation and shared customer vision</td>
</tr>
</tbody>
</table>

Cloud to Edge Deployments

![Cloud to Edge Deployments Diagram](image)
Computational Storage: Your Invitation

- Collaborate on workloads and use cases
 - Data Analytics
 - Data Management
 - AI Inference

- Solution development
 - POC trials
 - Ecosystem partners
 - TCO comparisons to alternate technologies

- Reach out to learn more:

 David McIntyre
d.mcintyre@samsung.com