

The Linux Kernel, Ecosystem,
and Community for Open
Switch Hardware

Roopa Prabhu, Director Engineering, Cumulus
Networks

Networking
Software

This talk is about...
● Open Switch Hardware and Linux Networking
● Disaggregated hardware and software stacks
● Journey of Open Switch Hardware in the Linux kernel and

Community
■ Linux Switch Hardware Offload
■ Linux networking features for the Datacenter Fabric

● Leveraging Linux ecosystem for Open Switch Hardware
● Building Open Data center networking fabrics with Linux and

Open Switch Hardware

NETWORKING

 Open Switch hardware and Linux:
 Revolution or Evolution ?

Open Compute Hardware and Linux networking

● Disaggregated Hardware and Software Stacks

● Linux hardware offload Model: Software
accelerated by hardware (Network, memory,
disk)

● Virtual hardware models: provide ability to test
without HW

OCP server Hardware (Nic, NPU)

Drivers

networking memory

Linux kernel

CPU IO

Apps protocols management

Open Networking Switch Hardware and Linux
networking

● Disaggregated Hardware and
Software Stacks

● Linux hardware acceleration Model:
Software networking accelerated by
Hardware

● Linux network forwarding plane is
the Model

● Virtual Linux forwarding model:
provides ability to test networking
without HW OCP Hardware: Network ASIC

Drivers

networking
(forwarding db)

mem
ory

Linux kernel

CPU IO

Apps control
protocols

manage
ment telemetry

It’s a natural Evolution..

● Unified Architectures for all Open Hardware
● Unified deployment and operational models
■ Ability to simulate and test workflows with Linux software

forwarding plane
● Vast Linux ecosystem to support all Open Hardware
● Cross technology pollination
■ Faster pace of innovation

No special appDB, configDB or appLib

Networking
app1

Networkin
g app2

 Kernel networking tables (routing, bridging, neigh, netfilter)

 Hardware tables (routing, bridging, neighbour, ACLs)

Linux networking API (Netlink), Linux kernel tables and Linux kernel hardware
offload API

Networkin
g appN

OCP Hardware running Linux
All Open hardware in this presentation is OCP hardware
Example hardware [1]
● FaceBook Wedge 100
● FaceBook Voyager
● Edgecore Networks AS7712-32X
● and more

Open Switch Hardware
 and

Linux Kernel Networking

Architecture

OCP Hardware: Network ASIC

Drivers (switchdev, user-space companion drivers)

routing

Linux kernel

dhcpFRR manage
ment

switch drivers in
user space

lldpd telemetry

VRF Netfilter
/tc

Policy
routing

VxLan
/MPLS
/GRE

vrrpd

 Linux networking Netlink API

bridging

hostap

eBPF
hooks

Linux Kernel Switch ASIC offload support
● Networking community and maintainer
● New abstractions: switchdev-ops, notifiers-ops, netdev-ops
● Extensions to “Netlink API” [2] to support Switch ASIC

deployments
● Linux kernel gets new features to support switch ASIC

deployments: VRF [4], VxLAN [5], E-VPN dataplane [3,5], MPLS
[10]
■ These features in turn have found uses in other software

and host deployments

Linux Kernel building blocks

Linux bridge

 eBPF

Netlink API
 GRE

 VxLAN

Neighbour
subsystem
(ARP, ND)

Linux Policy
Routing

Linux Kernel
Routing

Netfilter
(iptables,
ebtables)

Linux Traffic
Classifier

Linux
Bonding

 MPLS

 devlink

 ethtool

Linux Networking Ecosystem
● Free Range Routing suite [3]
● Linux Dhcp [6] , vrrpd [7], lldpd [8], wpa [9], networking

tools
● iproute2 [17] and ifupdown2 [18] for network configuration
● Systemd for service monitoring [16]
● Linux traffic classifier
● Linux netfilter: iptables, ip6tables, ebtables

Linux Networking: Latest cool things
● Network programmability with eBPF hooks in

● Network cgroups
● Network tracing
● TCP analytics and congestion algorithms
● Filtering: Linux traffic classifier and Netfilter (bpfFilter)
● Accelerated Datapath with XDP
● Socket API’s

Open Switch Hardware
and

Linux Networking in the Data Center

Modern Data Center Network
SPINE

LEAF/TOR

Data center Layer-3 gateway
SPINE

LEAF (TOR) layer-3 boundary

Layer-3
gateway

Open Layer3 gateway
● Linux kernel: routing FIB, VRF and neighbour

subsystem
● Open Linux routing protocol stack: FRR (Free Range

Routing)
● Open switch ASIC hardware with layer3 support

Open switch hardware and Linux L3
gateway Spine

 Hosts Rack1

Host/VM 1
Mac1,

Host/VM 2
mac2

Leaf1
Leaf2 Leaf3

 Hosts Rack2 Hosts Rack3

Host/VM 3
mac3,

swp1 swp1
swp2swp1

Host/VM 11
Mac11,

Host/VM 22
mac22, Host/VM 33

mac33,

- leaf* are l3 gateways
running Linux kernel
and FRR routing stack

swp2swp2

FRR FRRFRR

Hybrid layer2 - layer3 data center network
SPINE

LEAF (TOR) Layer2-3 boundary

Layer-2
gateway

Open Layer2 gateway
● Linux kernel bridge driver and forwarding database:
■ STP, IGMP snooping

● Open Linux protocol implementations
● Open switch ASIC hardware with Layer2 support

Open switch hardware and Linux L2 gateway
Spine

 Hosts Rack1

swp2 swp2

Host/VM 1
Mac1, VLAN-10

Host/VM 2
mac2, VLAN-20

Leaf1

Leaf2 Leaf3

 Hosts Rack2 Hosts Rack3

Host/VM 3
mac3, VLAN-30

bridge bridge bridge

swp2swp1 swp1 swp1

bridge.10 bridge.20
bridge.30

Host/VM 11
Mac11, VLAN-10

Host/VM 22
mac22, VLAN-20 Host/VM 33

mac33, VLAN-30

- leaf* are l2 gateways
running Linux bridge
- Bridge within the same
vlan and rack and route
between vlans
- bridge.* Linux vlan
interfaces act as SVIs for
routing

Network Virtualization and Overlay gateways
SPINE

LEAF (TOR) Layer2-3 boundary

Layer-2 overlay
gateway: vxlan
vteps

Vlans on the
hypervisors

Open VxLan overlay gateway

● Linux kernel vxlan data and forwarding plane
● Linux bridge driver
● Open switch ASIC hardware with vxlan support

Open switch hardware and Linux overlay gateway
Spine

 L3 Underlay

 Hosts Rack1

vxlan-10
10.1.1.1

vxlan-10
10.1.1.2

Host/VM 1
Mac1, VLAN-10

Host/VM 2
mac2, VLAN-10

Leaf1 Leaf2 Leaf3

 Hosts Rack2 Hosts Rack3

Host/VM 3
mac3, VLAN-10

bridge bridge bridge

vxlan-10
10.1.1.3

$bridge fdb show
mac1 dev swp1 vlan 10 master bridge
mac2 dev vxlan-10 vlan 10 master
bridge
mac2 vxlan-10 dst 10.1.1.2 self
mac3 dev vxlan-10 vlan 10 master
bridge
mac3 dev vxlan-10 dst 10.1.1.3 self

$bridge fdb show
mac3 dev swp1 vlan 10 master bridge
mac2 dev vxlan-10 vlan 10 master
bridge
mac2 vxlan-10 dst 10.1.1.2 self
mac1 dev vxlan-10 vlan 10 master
bridge
mac1 dev vxlan-10 dst 10.1.1.3 self

swp1 swp1 swp1

VXLAN
Tunnel

Open Linux E-VPN Data center Fabric

● Linux kernel VxLan data and forwarding plane
● Linux kernel routing, bridge and neighbour subsystem
● Open switch ASIC hardware with VxLan and routing support
● Open E-VPN control plane: FRR (Free range routing)

FRR E-VPN and Linux kernel

 kernel bridge fdb table

 kernel vxLan fdb table

 kernel neighbour table

 kernel route table

 FRR E-VPN
 control plane

 Switch ASIC hardware

E-VPN with Open Hardware and Linux
Spine

 L3 Underlay

 Hosts Rack1

vxlan-10
10.1.1.1

vxlan-10
10.1.1.2

Host/VM 1
mac1, IP1
VLAN-10

Host/VM 2
mac2 IP2
VLAN-10

Leaf1
Leaf2 Leaf3

 Hosts Rack2 Hosts Rack3

Host/VM 3
mac3, IP3
 VLAN-10

bridge bridge bridge

vxlan-10
10.1.1.3swp1 swp1 swp1

VXLAN
Tunnel

leaf1

FRR
BGP

(a) FRR BGP discovers local
vlan-vni mapping via
netlink

(b) BGP reads local bridge
<mac, vlan> entries and
distributes them to bgp
E-vpn peers

(c) BGP learns remote <mac,
vni> entries from E-VPN
peers and installs them
in the kernel bridge fdb
table

(d) Kernel bridge fdb table
has all local and remote
mac’s for forwarding

FRR
BGP

FRR
BGP

(a) Bridge learns
local <mac,
vlan> in its
fdb

New and Ongoing work
● Scaling Linux routing API [13]
● Devlink hardware management API for Switch ASICS [14]

● Extends beyond Switch Hardware: NICs, SRIOV, NPUs
● Firmware management

● E-VPN updates for multihoming and multicast
● Debuggability: perf tracing/probes in networking

subsystems
● Kernel networking selftests [11] and syzbot [12]

References
[1] Cumulus Linux hardware compatibility list: https://cumulusnetworks.com/products/hardware-compatibility-list/

[2] Netlink API: http://man7.org/linux/man-pages/man7/netlink.7.html

[3] FRR routing stack: https://frrouting.org/

[4] VRF https://cumulusnetworks.com/blog/vrf-for-linux/

[5] Linux bridge, VxLan and E-VPN https://www.netdevconf.org/2.2/slides/prabhu-linuxbridge-tutorial.pdf

[6] Linux Dhcp server: https://packages.debian.org/isc-dhcp-server

[7] VRRP: https://packages.debian.org/vrrpd

[8] LLDPD https://packages.debian.org/lldpd

[9] WPA (802.1x) https://packages.debian.org/wpa

References (Contd)
[10] MPLS in the Linux kernel:

https://netdevconf.org/1.1/tutorial-deploying-mpls-linux-roopa-prabhu.html

[11] Linux kernel selftests: testing hardware switch forwarding with VRFs :
https://marc.info/?l=linux-netdev&m=151981456405307&w=2

[12] syzbot: Tests Linux kernel branches: https://github.com/google/syzkaller/blob/master/docs/syzbot.md

[13] Scaling routing API https://lwn.net/Articles/763950/

[14] devlink api for switch ASICS: https://lwn.net/Articles/674867/

[15] E-VPN: Arp-ND suppression support: https://patchwork.ozlabs.org/cover/822906/

[16] systemd: https://wiki.debian.org/systemd

[17] iproute2: https://mirrors.edge.kernel.org/pub/linux/utils/net/iproute2/

[18] ifupdown2: https://packages.debian.org/ifupdown2

Call to Action
Linux networking Community:
mailing list: netdev@vger.kernel.org , http://vger.kernel.org/vger-lists.html#netdev

Free Range Routing Community: https://frrouting.org/ , https://frrouting.org/#participate

Linux debian ecosystem for packages/apps: eg https://packages.debian.org/jessie/

Cumulus Networks Hardware compatibility list: for native Linux network operating system support on OCP
hardware: https://cumulusnetworks.com/products/hardware-compatibility-list/

Linux networking Conference to discuss new hardware and software support for switch ASICs:
https://netdevconf.org/

Linux networking hardware offload workshop at the upcoming conference in Prague:
https://www.netdevconf.org/0x13/session.html?workshop-hardware-offload

Open Network Install Environment:
https://www.opencompute.org/wiki/Networking/SpecsAndDesigns#Open_Network_Install_Environment

mailto:netdev@vger.kernel.org
http://vger.kernel.org/vger-lists.html#netdev
https://cumulusnetworks.com/products/hardware-compatibility-list/
https://netdevconf.org/

