Securing The Hardware Platform in the Cloud Cerberus Present And Future

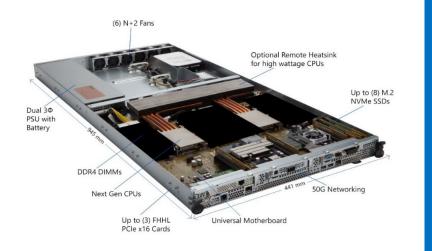
Badriddine Khessib Senior Director Azure Hardware Infrastructure

Azure Hardware | Project Olympus

100% inhouse design by Microsoft

Contract manufactured by ODMs

Open Source Development Model


Develop hardware at cloud speed, jointly with community and industry

Industry Ecosystem

Vibrant ecosystem for next generation datacenter hardware

Open Source Hardware deployed in Azure Datacenters

Project Olympus | Design

Flexible and Modular design to handle wide variety of public cloud workloads

Compute Intel, AMD, ARM64 CPUs High density GPU expansion for HPC/AI NVM (DRAM+battery) and 3DXP for low-latency

Storage High density HDD and Flash expansion <u>Microsoft custom designed SSDs</u>

Networking 50 Gbps networking Accelerated VMs using FPGAs

Microsoft

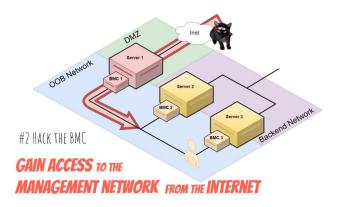
Rethinking system security at cloud-scale

LoJax: First UEFI rootkit found in the wild, courtesy of the Sednit group

5.1.1.1.1.1.

ESET researchers have shown that the Sednit operators used different components of the LoJax malware to target a few government organizations in the Balkans as well as in Central and Eastern Europe

Vulnerabilities in modern computers leak passwords and sensitive data.

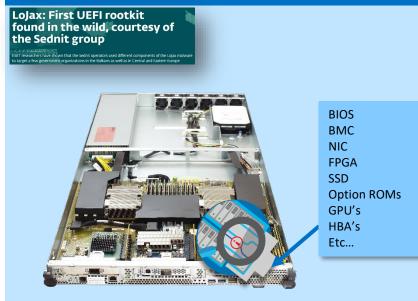


The Big Hack: How China Used a Tiny Chip to Infiltrate U.S. Companies

Bloomberg Businessweek

SGX side-channel attacks

Inferring Fine-grained Control Flow Inside SGX Enclaves with Branch Shadowing



Microcode Updates for the USENIX 2017 paper: Reverse Engineering x86 Processor Microcode

OCTOBER 19, 2018 ~ HUCKTECH

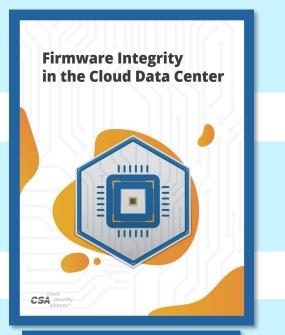
Hardware Security Threats

Firmware Vulnerabilities

Hardware Tampering

Higher Likelihood, medium sophistication Can be mitigated with engineering investments Very sophisticated, nation-state level Risk mitigated mostly via supply chain controls

Microsoft


NIST 800-193 : Protect, Detect, Recover

Authenticate integrity of all firmware updates Root(s) of trust & chain(s) of trust across the platform

Detect unauthorized access or corruption Generate traces & events to help detect anomalies

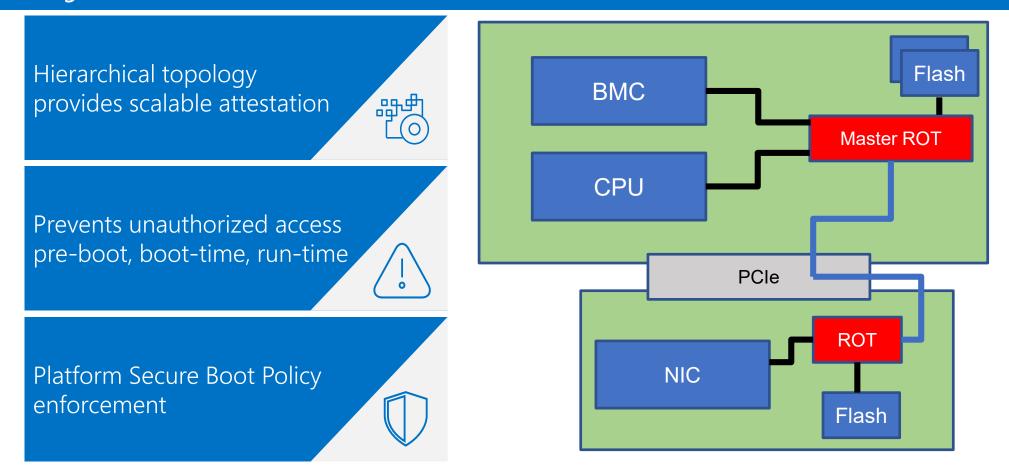
Restore firmware to state of integrity Automatic, Automatable and manual recovery scenarios

https://downloads.cloudsecurityalliance.or g/assets/research/firmware/firmwareintegrity-in-the-cloud-data-center.pdf

What is Cerberus

1 A set of **platform requirements**

• E.g. Power sequencing while establishing trust


2 A set of requirements for ensuring firmware integrity

- E.g. how to verify firmware integrity at boot
- E.g. how to verify firmware signatures during updates

3 A **chip** that helps you implement the requirements

Project Cerberus – Hardware Root of Trust

Project Cerberus Controller

Dedicated security microprocessor

• Internal secure SRAM, secure Flash.

Contains crypto acceleration blocks

• SHA / AES / TRNG / PKA

One Time Programmable (OTP) memory for Key persistence

Hardware Physically Unclonable Function (PUF)

Device Identifier Composition Engine (DICE)

SPI/QSPI bit-stream filter interface

Deployed on Project Olympus platforms

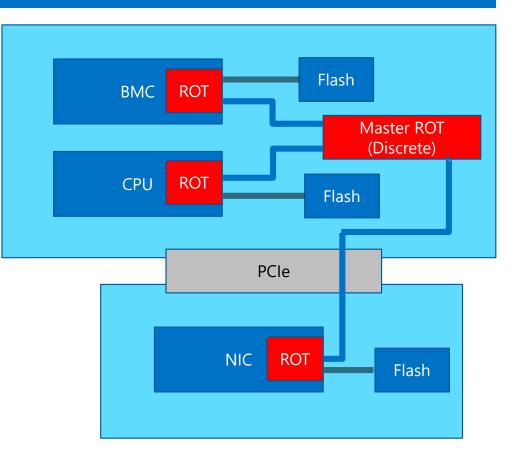
Micro Processor	AES-256	TRNG
	РКА	SHA2
Power & Clock Unit POR, OCS, PLL, Clock Out	SRAM PUF	ОТР
Flash	ADC	I2C
SRAM	SPIFI	Temp Sensor
ROM	SPI/QSPI Filter	

Standardize secure boot for peripheral devices

- Some implementations are not so secure!
- Harden against physical intrusion scenarios
 - Man-in-the-middle attack
- Secure key/measurement storage
- Advanced key management
- Supply chain security

DeviceID an ManufacturerID authentication and signing

Cerberus Continued Integration


Silicon Integrated RoT

Compatible with Cerberus Discrete Enhanced Features:

- Secure key/measurement storage
- Advanced key Management

Open Design

- Open Firmware
- Open RTL

Participate in OCP Security Project

Complete Cerberus V1 Spec

Start the Cerberus Next Silicon Definition

Visit MS and partner booths to see Cerberus in action

