OCP – ODSA Project

Open Platform Development for BoW PHY Interoperability Testing

Jayaprakash Balachandran
Cisco inc
Acknowledgements

Namhoon Kim, Google
Dr. Elad Alon, Blue Cheetah Analog
Anand Dixit, Blue Cheetah Analog
Wen-sin Liew, dMatrix
Irene Quek, dMatrix
Prof Shalab Gupta, IIT Bombay, India
Geedimatla Shekar, IIT Bombay, India
Ishan Mishra, IIT Bombay, India

Bapi Vinnakota, OCP
Mike Bartley, Tessolve
Janga Venkata Naresh, Tessolve
Praveen Kumar, Tessolve
Meenaskhi Ramanathan, Tessolve
Prasad Swaminathan, JCET
Dr. Ouyang Eric, JCET
Dharmesh Jani, Meta
Interoperability Key for Chiplet based IC Designs

Chiplet based Integrated Circuit

Vendor A CPU

Vendor A CPU

Vendor D HSIO

Vendor B Accelerator

Vendor C Memory Controller

Package

interoperability
Interop Objective

- Demonstrate interoperability between two independent PHY implementations based on BoW spec 1.0

- Bring confidence to adopters
BoW Interop Platform

Community Developed Open Platform

BoW Spec 1.0 → PHY Test Chip → Interop Package dev → Interop Bring up PCB dev → Software → Interop Testing

BCA, DMatrix

Report
BoW Interop Community
BoW Interop Substrate

5 Test Structures
10 dies
16 Gbps D2D data rate
BoW Interop Substrate

<table>
<thead>
<tr>
<th>Package Design Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td># dies per package</td>
<td>10 (BCA – 6, dMatrix – 4)</td>
</tr>
<tr>
<td>Package size</td>
<td>40 x 40 mm FCBGA</td>
</tr>
<tr>
<td>Layer count</td>
<td>5-2-5</td>
</tr>
<tr>
<td>Bump pitch</td>
<td>130 um</td>
</tr>
<tr>
<td>BGA Ball Pitch</td>
<td>1 mm</td>
</tr>
<tr>
<td>Package build up dielectric</td>
<td>GL102</td>
</tr>
<tr>
<td># Test Sites</td>
<td>5 .L – 20 mm long trace .S – 5 mm short trace</td>
</tr>
</tbody>
</table>
Interop PKG Layout Meets BoW SI Requirements
Interop PKG meets Power Integrity Specs

Power Integrity Specs met for all power supply rails in all test structures

Ref: Ishan Mishra, IIT Bombay

VDDQ Supply for TS2

VDDQ Power Supply Noise (mV pp)

Spec limit

No Cap 0.1 uF 1 uF 4.7 uF
On-package decoupling capacitor
Successfully Addressed Power Integrity Challenges

- High PDN loop inductance
- S-parameter Convergence
- Noise aliasing
- Chip-Package resonance
SI Simulation Challenges

- Extending BoW to 32 Gbps data rates
- Crosstalk – a limiter for performance
- Need better simulation methodologies
 - Excessive EM simulation time for 32 Gbps data rates
 - Include Power bumps as return path in the sim
PCB Platform for Interop Testing

- Programmable Clocks
- Programmable Power Supply
- V/I Monitor
- RESET
- CPU Module
- USB
- Ethernet
- GPIO
- SPI
- UART
- JTAG
- BoW Interop Package
- Ext JTAG
- Ext HS CLOCK
- Thermal head CTRL
- Test Instrument CTRL
- RESET
Future Directions

- Fabricate Interop Package and PCB
- Interop Testing and Publish results
- Establish feasibility of 32 Gbps
- New Simulation Techniques for BoW link SI Simulations
Summary

- Facilitate BoW Deployments in commercial products through Interop Testing and Validation
 - First of its kind for chiplets
- Open Interop Platform dev in Progress
- Join us and drive chiplet innovation
 - Weekly Meetings : Wed, 10 – 11 AM
Thank you!