

Offloading TLS Onto Crypto SmartNIC
A Technical Introduction

Nic Viljoen, Associate Director of Engineering, Netronome

Introduction: Agenda
➔ Introduction
➔ Background
➔ Firmware
➔ Driver & Kernel
➔ Initial Tests
➔ Performance Analysis
➔ Summary
➔ Next Steps

SERVER

Design Files
Product

Recognition

Introduction to TLS

The TLS Connection
ClientHello

ServerHello

get_time
random number Random Number

Check Session ID

Certificate/Key
Exchange Sign Certificate/Setup Keys

HelloDone

Certificate/Key
Exchange

Verify Server Certificate/Sign
Client Certificate/Setup Keys

Certificate
Request

CCS then
Finished

Verify Client Certificate/ Check
Finished Handshake Veracity

CCS then
Finished

Application Data Application Data

Check Finished
Handshake Veracity

Client Server

Bulk Encryption/Authentication Bulk Encryption/Authentication

The TLS Record

Ciphertext

Content
Type Version Length

Authentication
Tag

Content Type (8 bits)

1. Change cipher specification (0x14)
2. Alert (0x15)
3. Handshake (0x16)
4. Application (0x17)

Version (16 bits)

Length (16 bits)

TLS Record can be up to 16KB

TLS (is always) over TCP
~1514B Maximum Frames

TLS Records

Lots of parsing before sending
payload data to crypto

Record across many frames

● TLS is designed to be handled *in order*
● However, the exact implementation details are cipher dependent

○ AES-GCM makes this slightly more flexible
● KTLS is upstream in kernel TLS processing handling TLS as a TCP ULP

○ ULP-Upper Layer Protocol
○ KTLS can be exploited for offload

● Everything in this presentation is done with upstream Linux

Kernel TLS & Offload Architecture

Kernel Stack: TX 50,000 ft Non-offloaded
App

Kernel/Driver

User Space

NIC

Data

Record

Record

Encryption

Record

Record

TCP Stack

IPTables/TC

Driver

NIC

Records split
into SKBs

write()

TLS

Kernel Stack: TX 50,000 ft Offloaded
App

Kernel/Driver

User Space

NIC

Data

Record

Record

TCP Stack

IPTables/TC

Driver

NIC

Records split
into SKBs

Record

Record

write()

Record

Record

TLS

Kernel Stack: RX 50,000 ft Non-offloaded
App

Kernel/Driver

User Space

NIC

Data

Encryption

TCP Stack

IPTables/TC

Driver

Record

Record

read()

Record

Record

NIC

Record

Record

Record

Record

TLS

Kernel Stack: RX 50,000 ft Offloaded
App

Kernel/Driver

User Space

NIC

Data

Check Data
TCP Stack

IPTables/TC

Driver

NIC

read()

Record

Record

Record

Record

Record

Record

TLS

Offload-Silicon &
FW

Background: Netronome NFP

Yield

Yield

Yield

Memory Architecture

Thread 0 Thread 1 Thread 2 Dispatcher Thread Thread

CPP Read X and
Yield

CPP Write Y

Push Value X

Pull Value Y

Return Value Y
Yield

Flow Processing Core Cluster Target Memory

Multithreaded Transactional
Memory Architecture Hides

Latency

Crypto Engine Processing
SRAM

Payload DataHeaders
Payload DataHeaders

Payload DataHeaders
Payload DataHeaders

Connection
DataConnection

DataConnection
DataCipher Data

(key, IV etc)

Connection
DataConnection

DataConnection
DataRecord

Context

Ptr_start Ptr_end

Crypto
EnginesCrypto

EnginesCrypto
EnginesCrypto

EnginesCrypto
EnginesCrypto

Engines

CNTR HASH
CNTR

CNTRCNTR
HASH

HASH
HASH

128 Gbps

Firmware: Life of a Crypto Packet (1)
PCIe/MAC

App Islands

Reorder Crypto

Reorder
PCIe/MAC

x7

x10
A

n

n
Semi-order Processing

Out of order
processing

= Descriptors

Session Table

need crypt?

Cleanup

Data for crypt.in

CAM
lookup

Session
Table

Lookup

Crypt

(latency hidden)
(latency hidden)

Ordered Processing

Recirc
send to

crypt
crypt.in

descriptors

crypt.out descriptors

Packet State

A. 2k packet buffer

State used once recirculated

App
Master

Firmware: Life of a Crypto Packet (2)

App Islands

Reorder

x7

x10

A

Out of order
processing

= Descriptors

Run
Interpreter

Ordered Processing

Increment
Stats

crypt.out descriptors

Packet PV
State

A. 2k packet buffer

Meta
data

Action
List

256 B
Restore PV

State

Load Action
List

PCIe/MAC

Firmware: Open Source
● We have open source our standard NIC FW
● Looking to incorporate this work relatively soon
● Allows others to contribute to our FW
● Allows customers the ability to see exactly what is happening
● See call to action slide for link!

Benchmarks

DUT

ThriftServerr

loadgen

Active Connections

40G40G 40G 40G

Switch

50G NIC
50GPCIe Gen 3 x4

Testing: Methodology

Benchmarks (at ~50 Gbps Line Rate)

Putting it all together

● TLS Offload returns up to over 90% of the CPU workload
associated with crypto

○ Total CPU saved is related to the size of the records
○ The larger the records the more CPU saved:

● NFP Based SmartNICs offload this at low cost and power
● Done through the use of a domain specific architecture

○ This lends itself well to handling TLS based crypto for 100,000s of connections

Summary

Product Info
Agilio-CX 50G OCP Mezz 2.0 NIC
https://www.opencompute.org/wiki/Server/Mezz#Specifications_and_Designs

New Mezz v2 Type 5 Spec
http://files.opencompute.org/oc/public.php?service=files&t=5ad90059827e13e0273ce1446393225e

Work in Progress
- CLA signed for contributing Design Files
- Working on OCP Accepted™ product recognition

https://www.opencompute.org/wiki/Server/Mezz
http://files.opencompute.org/oc/public.php?service=files&t=5ad90059827e13e0273ce1446393225e

Call to Action
Netdev: netdev@vger.kernel.org
Open NIC FW: https://github.com/Netronome/nic-firmware
Open-NFP: open-nfp@googlegroups.com
OCP Mezz: opencompute-mezz-card@lists.opencompute.org

Where to buy: https://www.netronome.com/products/agilio-cx/

Project Wiki with latest specification : http://www.opencompute.org/wiki/Server/Mezz

TLS Spec: http://lists.opencompute.org/mailman/listinfo/opencompute-mezz-card

KTLS kernel docs: https://www.kernel.org/doc/html/latest/networking/tls-offload.html

mailto:netdev@vger.kernel.org
https://github.com/Netronome/nic-firmware
mailto:open-nfp@googlegroups.com
mailto:opencompute-mezz-card@lists.opencompute.org
https://www.dropbox.com/referrer_cleansing_redirect?hmac=U4hMxDzgExXi/HnN+KReIu2ALgwODMx/5e07P0swXH8=&url=http://www.opencompute.org/wiki/Server/Mezz
http://lists.opencompute.org/mailman/listinfo/opencompute-mezz-card
https://www.kernel.org/doc/html/latest/networking/tls-offload.html

Backup:
Performance Analysis

Performance Analysis: Flame Graphs
Flame Graphs are a histogram of call stack state Top of call stack is using

cycles

Performance Analysis: Cycles
Plaintext-cycles used by TCP stack (low connection count case-1000)

Performance Analysis: Cycles
SW KTLS-encrypt_by_8_new appears expensive(low connection count case-1000)

Performance Analysis: Cycles
HW KTLS-removes the expense of crypto on host (low connection count case-1000)

Performance Analysis: Effect of Connections
Appears to be due to different effect-see scatterwalk in flamegraph (150,000 connections)

Performance Analysis: Cache Misses
• Potentially some correlation between cache misses and performance

§ ThriftServer:
o 91% LLC hits for plaintext, HW KTLS
o 75% for SW KTLS

§ Loadgen (appears more memory heavy)
o 86% Plaintext, HW KTLS, ~25% for SW KTLS

• Loadgen also has 30% larger performance delta
• 50% of the misses appear to be stores sourced from

encrypt_by_8_new
§ This is an optimized macro in linux/arch/x86/crypto/aesni-intel_avx-x86_64.S

• Further investigation required

Bulk Encryption: TX Path
Socket

TLS

Driver

TCP

Data

SKB

SKB

SKB Record

Record
SKB

Is TCP Seq
Number

Expected?

TX to NIC

encrypt_skb

set metadata to
encrypted

Socket Handle TCP Seq No
FW

Handle

.tls_dev_resync

nfp_net_tls_resync()

update session entry

encrypt_skb

ccm_mbox_communicate()

App Master

triggered by incorrect TCP seq no

FW Handle, action
(resync), crypto state, dir

Return CodeY

N

Bulk Encryption: RX Path
Socket

TLS

Driver

Data

SKB

SKB

SKB Record

Record
SKB

Is packet
decrypted?

Packet Received

.tls_dev_resync

nfp_net_tls_resync()

ccm_mbox_communicate()

App Master

FW Handle, action
(resync), crypto state, dir

Return Code

Packet Descriptor

Is record
decrypted?

*Was previous
record

decrypted*

*This is more
complex*

Mark SKB
decrypt bit

Y

N

N

N

Moving to TLS 1.3
• Modify add mechanism to add the TLS type

• No way of telling from the packets-masquerade as 1.2
• New encryption instruction lists for the TLS 1.3
• Modify the record reassembly as nonce cases don’t apply

anymore
• This work would be post beta-testing success in current

schedule

SERVER NETWORKINGSTORAGE RACK & POWER

DATA CENTER
FACILITIES

TELCOMANAGEMENT HPC

SECURITY

OPEN SYSTEMS
FIRMWARE

Please use the appropriate icon representing the Project Group

The following project group logos are missing: OpenEdge, OpenRMC, ACS. If you need one of these, contact Archna@opencompute.org

Reference
Architecture

Tested
Configurations

White
Papers

Case Studies

Workshops
Summits

Testimonials
Seminars

Videos

Embedded
Software

Specifications

Design Files
Product

Recognition

Please use the appropriate icon representing your type of contribution

Facility
Recognition

