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Agenda

1. Software’s Access to “Now”

2. Accurately Transferring Time to the CPU

3. Non-Ethernet Time-Synchronization
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Application Software separated from 
Network Time by a large chasm

For software, Reading Time from a Network Peripheral can be VERY SLOW
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One Approach for Bringing 
Network Time Near to Software
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Modern Computer Systems Aren’t 
So Simple

The Reality:

•Multiple Network Time Sources

•Some Applications Track Multiple Time 
Sources Simultaneously

•Multiple Virtual Machines / Operating 
Systems

Adding Multiple Hardware Times in the CPU Doesn’t Scale
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Scalable Timescale Representation

• Here’s what’s needed:

1. A “Stable-Enough” HW Reference

2. Fast * and + Operations

3. Precise estimate of m and c

• ➔ Any Timescale to/from Any Timescale
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CPU Counter → Synchronized Time
Time “now” (from a Linux Application)

(1) clock_gettime(CLOCK_MONOTONIC_RAW, &now);

• Returns current TSC value scaled to nominal nanoseconds

(2) clock_gettime(CLOCK_MONOTONIC,     &now);

• Returns current TSC value scaled to track TAI, in nanoseconds

(3) clock_gettime(CLOCK_REALTIME,      &now);

• Returns CLOCK_MONOTONIC + (now-1/1/1970) [incl. leap seconds]

Cross-Timestamp Snapshot

(4) ioctl(phc_fd,PTP_SYS_OFFSET[_PRECISE], &offset )

• returns the triple:

- eth_ptp_time; realtime; monotonic_raw
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…

Snapshot(4)

*
ns/tsc

tick

POSIX: Piecewise-Linear Clock Model: y[n]=mx[n]+c
*Don’t Change the TSC Value*
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Using PCIe PTM to Cross-
Timestamp
( P T M = P r e c i s i o n  T i m e  M e a s u r e m e n t )

System Time_1

Cross Timestamps,
Captured Simultaneously

PCIe Root Complex

Switch

Computer 
System

Other I/O
Device

NIC

System 
Time

Delays over PCIe 
links and through 
Switches can be
compensated

PTP Network Time

LAN

System Time_2

Other I/O DeviceTime

PTM measurements presented by Chris 

Hall to OCP TAP are here:
https://www.youtube.com/watch?v=JgHD1CU4Ycs

https://www.youtube.com/watch?v=JgHD1CU4Ycs
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Agenda

1. Software’s Access to “Now”

2. Accurately Transferring Time to the CPU

3. Non-Ethernet Time-Synchronization
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Accurate Time Over Heterogeneous 
Links
• Ethernet:

⎻ Many flavors (profiles) of PTP. End-to-End, Peer-to-Peer.

⎻ Biggest challenge is Switch support for the proliferation of PTP profiles

• PCIe PTM

⎻ Similar to 1588 Pdelay: Round-Trip 4-timestamps. CPU clock used as shared reference.

⎻ Google search: PCIe PTM

• USB PTM:

⎻ USB bus clock used as shared reference between Host Controller & Dev (Si support in the latter lags)

As part of Time-Sensitive Networking (TSN), the 802.1AS profile of 1588 is supported with:

• Wi-Fi:

⎻ 802.11 [Fine] Timing Measurement ([F]TM), similar to PTP PDelay: Simple round-trip 4 timestamps,

⎻ Immune to retransmission. Google Search: Avnu WTSN

• 5G URLLC:

⎻ Uses 5G system clock as a common reference across infrastructure & UEs, per 3GPP 

⎻ The 5G system appears like a 1588 Transparent Clock. Google Search: 802.1AS 5G URLLC

And beyond…

• UWB, I3C, GNSS, WWV, …
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Backup



Derived from ieee802.org/1/files/public/docs2014/as-kbstanton-8021AS-tutorial-0714-v01.pdf Kevin B. Stanton

PTP (the 802.1AS Profile) over 802.11 links
Using the 802.11 TimingMeasurement (or FineTimingMeasurement) protocol

First exchange:
• takes a measurement

Subsequent exchange:
• takes a measurement

• also passes timestamps from prior 
measurement

Free-running counter used for timestamps

Allows us to compute:

neighborRateRatio =

(t1’-t1)/(t2’-t2)

linkDelay =

[(t4-t1)-(t3-t2)]/2

timeOffset=

[(t2-t1)-(t4-t3)]/2

[note: rateRatio is also applied]

M1

M1_ACK

M2

M2_ACK

Action Frame M1 contains:

Dialog Token = n

FollowUp Dialog Token = 0
t2 = ToA (M1)

t4 = ToA(M1_ACK)

Action Frame M2 Contains:
Dialog Token  = n+1 (but is != 0)

FollowUp Dialog Token = n

Timestamp Difference = t4-t1

Timestamp = t1

t3 = ToD(M1_ACK)

t1 and t4-t1 known

once M2 is received

STA-B

(Slave)
STA-A

(Master)

t1' = ToD(M2)

t4' = ToA(M2_ACK)

t3' = ToD(M2_ACK)

t2' = ToA(M2)

t1 = ToD(M1)

NOTE: M1 and M2 have exactly the same format—
they’re TIMINGMSMT Private Action Frames (and Unicast, BTW)
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Computer Time Architecture
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