
Connect. Collaborate. Accelerate.

Time-Sync Beyond
Ethernet :
C P U , W i - F i , a n d 5 G

Intel

Kevin B. Stanton

Connect. Collaborate. Accelerate.

Agenda

1. Software’s Access to “Now”

2. Accurately Transferring Time to the CPU

3. Non-Ethernet Time-Synchronization

Connect. Collaborate. Accelerate.

Application Software separated from
Network Time by a large chasm

For software, Reading Time from a Network Peripheral can be VERY SLOW

Connect. Collaborate. Accelerate.

One Approach for Bringing
Network Time Near to Software

Computer

System

LANLAN
PTP

GM

Replicating Network Time in the CPU Hardware

Doesn’t Scale—See next slide

M
a

k
e

 A
 C

o
p

y
?

CPU Time

Connect. Collaborate. Accelerate.

Modern Computer Systems Aren’t
So Simple

The Reality:

•Multiple Network Time Sources

•Some Applications Track Multiple Time
Sources Simultaneously

•Multiple Virtual Machines / Operating
Systems

Adding Multiple Hardware Times in the CPU Doesn’t Scale

Eth5G

Network

Hypervisor

App

1

App

2

App

3

App

4

Wi-Fi

Operating
System

Operating
System

Various Timescales

CPU

Connect. Collaborate. Accelerate.

Scalable Timescale Representation

• Here’s what’s needed:

1. A “Stable-Enough” HW Reference

2. Fast * and + Operations

3. Precise estimate of m and c

• ➔ Any Timescale to/from Any Timescale

m

c

*
+

PTP

GM #0

External

Timescale

CPU Counter

(e.g., TSC)

*m

c +
PTP

GM #1

. . .

Timescale Translation Scales Well

m

c

*
+

NTP

Time

. . .

Connect. Collaborate. Accelerate.

CPU Counter → Synchronized Time
Time “now” (from a Linux Application)

(1) clock_gettime(CLOCK_MONOTONIC_RAW, &now);

• Returns current TSC value scaled to nominal nanoseconds

(2) clock_gettime(CLOCK_MONOTONIC, &now);

• Returns current TSC value scaled to track TAI, in nanoseconds

(3) clock_gettime(CLOCK_REALTIME, &now);

• Returns CLOCK_MONOTONIC + (now-1/1/1970) [incl. leap seconds]

Cross-Timestamp Snapshot

(4) ioctl(phc_fd,PTP_SYS_OFFSET[_PRECISE], &offset)

• returns the triple:

- eth_ptp_time; realtime; monotonic_raw

m

c

*
+

TSC

(1)

(2)

(3)

PTP

NTP

GPS

…

Snapshot(4)

*
ns/tsc

tick

POSIX: Piecewise-Linear Clock Model: y[n]=mx[n]+c
Don’t Change the TSC Value

Connect. Collaborate. Accelerate.

Using PCIe PTM to Cross-
Timestamp
(P T M = P r e c i s i o n T i m e M e a s u r e m e n t)

System Time_1

Cross Timestamps,
Captured Simultaneously

PCIe Root Complex

Switch

Computer
System

Other I/O
Device

NIC

System
Time

Delays over PCIe
links and through
Switches can be
compensated

PTP Network Time

LAN

System Time_2

Other I/O DeviceTime

PTM measurements presented by Chris

Hall to OCP TAP are here:
https://www.youtube.com/watch?v=JgHD1CU4Ycs

https://www.youtube.com/watch?v=JgHD1CU4Ycs

Connect. Collaborate. Accelerate.

Agenda

1. Software’s Access to “Now”

2. Accurately Transferring Time to the CPU

3. Non-Ethernet Time-Synchronization

Connect. Collaborate. Accelerate.

Accurate Time Over Heterogeneous
Links
• Ethernet:

⎻ Many flavors (profiles) of PTP. End-to-End, Peer-to-Peer.

⎻ Biggest challenge is Switch support for the proliferation of PTP profiles

• PCIe PTM

⎻ Similar to 1588 Pdelay: Round-Trip 4-timestamps. CPU clock used as shared reference.

⎻ Google search: PCIe PTM

• USB PTM:

⎻ USB bus clock used as shared reference between Host Controller & Dev (Si support in the latter lags)

As part of Time-Sensitive Networking (TSN), the 802.1AS profile of 1588 is supported with:

• Wi-Fi:

⎻ 802.11 [Fine] Timing Measurement ([F]TM), similar to PTP PDelay: Simple round-trip 4 timestamps,

⎻ Immune to retransmission. Google Search: Avnu WTSN

• 5G URLLC:

⎻ Uses 5G system clock as a common reference across infrastructure & UEs, per 3GPP

⎻ The 5G system appears like a 1588 Transparent Clock. Google Search: 802.1AS 5G URLLC

And beyond…

• UWB, I3C, GNSS, WWV, …

Connect. Collaborate. Accelerate.

Backup

Derived from ieee802.org/1/files/public/docs2014/as-kbstanton-8021AS-tutorial-0714-v01.pdf Kevin B. Stanton

PTP (the 802.1AS Profile) over 802.11 links
Using the 802.11 TimingMeasurement (or FineTimingMeasurement) protocol

First exchange:
• takes a measurement

Subsequent exchange:
• takes a measurement

• also passes timestamps from prior
measurement

Free-running counter used for timestamps

Allows us to compute:

neighborRateRatio =

(t1’-t1)/(t2’-t2)

linkDelay =

[(t4-t1)-(t3-t2)]/2

timeOffset=

[(t2-t1)-(t4-t3)]/2

[note: rateRatio is also applied]

M1

M1_ACK

M2

M2_ACK

Action Frame M1 contains:

Dialog Token = n

FollowUp Dialog Token = 0
t2 = ToA (M1)

t4 = ToA(M1_ACK)

Action Frame M2 Contains:
Dialog Token = n+1 (but is != 0)

FollowUp Dialog Token = n

Timestamp Difference = t4-t1

Timestamp = t1

t3 = ToD(M1_ACK)

t1 and t4-t1 known

once M2 is received

STA-B

(Slave)
STA-A

(Master)

t1' = ToD(M2)

t4' = ToA(M2_ACK)

t3' = ToD(M2_ACK)

t2' = ToA(M2)

t1 = ToD(M1)

NOTE: M1 and M2 have exactly the same format—
they’re TIMINGMSMT Private Action Frames (and Unicast, BTW)

Connect. Collaborate. Accelerate.

Computer Time Architecture

CPU

System

LAN

CPU

System

LAN

CPU

System

LAN

LAN LAN

Signal

Sampling

Event
Timestamp/
Generation

Signal

Generation

Software

Event

Capture

Software

Event

Trigger

I/O Subsystems
CPU System

