Multi-Tier Memory in Windows and Azure

Scott Lee
(Ray)Jui-Hao Chiang
Agenda

• Directional sharing on multi-tier memory support on Windows and exposure to applications.
• Potential usage of multi-tier memory in Azure
Multi-Tier Memory in Windows
Multi-Tier Memory

• Memory devices on the horizon that have different performance characteristics than DDR DRAM DIMMs.
 • HBM (High Bandwidth Memory): expected in some servers
 • CXL memory device: may contain DRAM and/or Storage Class Memory (SCM)

• Performance characteristics
 • Latency
 • Bandwidth

• Two memory categories
 • General Purpose Memory
 • Dedicated Memory
General Purpose Memory

- Memory available on current systems
- Allocatable by anyone
- Contributes to system commit
- Specific performance characteristics for General Purpose Memory is TBD.
 - General guidance: any performance equal to or up to a NUMA node difference for DDR DRAM DIMM can be General Purpose Memory
Dedicated Memory

• Available only through dedicated APIs
• Does not contribute to system commit
• Have performance characteristics different from General Purpose Memory
 • Can be lower or higher performance
• Can have many different Dedicated Memory types on a system
OS Discovery of Dedicated Memory

- Leverage mechanisms in ACPI and UEFI to discover Dedicated Memory on a system
- Memory-only NUMA nodes in ACPI SRAT
- Report of performance characteristics through ACPI HMAT table
- Dedicated Memory marked as reserved or special purpose memory to OS
Software Discovery of Dedicated Memory

- System can have many different Dedicated Memory types
- Each Dedicated Memory type has a unique combination of attributes
 - Current attributes: read/write latency and bandwidth
 - Number of attributes likely to grow over time
- Performance characteristics reported will be the speed of the media outside of any intermediate caches and from the closest CPU node
- New APIs
 - Enumeration of Dedicated Memory types available on a system
 - Allocate or free memory from a specific Dedicated Memory type
OS Usage of Dedicated Memory

- See usages of Dedicated Memory by OS to augment the General Purpose Memory (e.g. DRAM) available on a system
- Potential usages within OS memory manager
 - Secondary store for standby pages
 - Faster pagefile
 - Secondary store for compressed memory pages
Multi-Tier Memory in Azure
Potential Scenarios of Multi-Tier Memory on Azure

• Zero-Infinity
 • Microsoft DeepSpeed [paper] [github] [website]
 • Zero Infinity software stack (Linux support) manages different classes of media
 • No model code refactoring is required to run on Zero-Infinity

• Far Memory OS Pagefile
 • Studied with Microsoft Research Asia
 • No application code refactoring is required to run on OS
GPU memory size can’t scale with AI model, especially for the natural language training. Opportunity to utilize another tier of larger media that can be slower and cheaper [Gholami et. al]
Zero-Infinity breaks down training jobs, schedules and moves data across different classes of media (GPU memory, CPU memory, and NVMe). No model code refactoring is required.
Zero-Infinity: Scale AI Model Linearly

There is potential to use far memory as additional class(es) of media in Zero-Infinity
Far Memory OS Pagefile

- Better COGs by replacing DRAM with far memory (cheaper & slower)
- Sample workload is a pure memory application for Machine Learning
 - Heavily rely on memory caching
- Use Windows OS to swap cold memory pages in DRAM to far memory
 - Transparent to application (no software change)
- Workload Profile
 - 32 threads; memory committed ~150 GB
- System Configuration
 - 32 VCPU 128GB DRAM + 128GB far-memory OS Pagefile
 - 17% working set on pagefile
 - 64 VCPU 256GB DRAM

![Latency Percentile](image)
Summary

• Systems with multi-tier memory are coming
• Work is needed to take advantage of this new hardware trend
• Azure is interested in using multi-tier memory to optimize existing services and create new services for our customers