
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Open Tape for Open Compute

Slavisa Sarafijanovic, Martin Petermann, Mark A. Lantz, Robert Haas
IBM Research - Zurich, CH-8803 Rueschlikon, Switzerland

sla, map, mla, rha @zurich.ibm.com

Abstract—Recently developed open-source software
components that facilitate the integration of tape into open
compute and cloud storage environments are described.
Workload trends and economic aspects motivating the use of
tape are also discussed.

Keywords—Tape hardware, tape software, filesystem storage,
object storage, cloud storage.

I. INTRODUCTION
The continued exponential growth in data combined with

the recent slow-down in areal density and $/GB scaling of
HDD is driving interest in lower cost alternatives. Magnetic
tape is well suited to meet this demand due to its high
reliability, low power and very low total cost of ownership
(TCO). Already in 2017, the LTO (linear tape open) program
reported that the cost of LTO7 media had fallen to less than
one cent per GB [1]. More recently, in a 2018 update to a
previous study, Enterprise Strategy Group found the TCO of
an LTO8 tape solution to be only 14% of that of an all disk
solution [2]. The huge potential to continue scaling areal
density and hence to further reduce cost per TB is further
driving interest in tape. For example, the latest Information
Storage Industry Consortium (INSIC) Tape Technology
Roadmap predicts that the areal density of tape systems can
continue scaling at the historical rate of about 34% CAGR
until at least 2029, enabling the scaling of cartridge capacity
from the current state of the art of 20TB native capacity to
many hundreds of TB [3]. The potential to continue scaling
tape areal density has also recently been experimentally
validated with a demonstration of tape recording at 201
Gb/in2, more than 17x the areal density of the latest 20TB
cartridges [4].

Tape’s low cost and scaling potential are driving
widespread interest in tape by hyperscale cloud companies
such as Google and MS Azure. One of the barriers to wider
tape use in other cloud environments is the perception that
tape is difficult to use and manage. This perception probably
arose because tape is a block storage device that historically
was managed using proprietary software solutions with a
separate database to manage the metadata of the data stored
on tape. However, recently there has been significant
progress in the development of technology that makes tape
easier to use, manage and integrate with disk-based
infrastructure. For example, the linear tape file system
(LTFS) introduced by the LTFS Consortium in 2010 is an
open, self-describing file system for tape cartridges based on
technology developed by IBM [5]. In its earliest form, IBM
LTFS SDE1 (single drive edition) [6], it enables a user to

1 IBM LTFS SDE, LE, and EE, were recently renamed to IBM Spectrum Archive SDE, LE,
and EE, respectively.

mount a tape cartridge as a file system and browse it using a
standard file browser on Linux/Windows/Mac, including
drag and drop functionality. More recently, IBM LTFS LE1
(library edition), which is available free of charge [7],
extended this functionality to an entire robotic tape library
where each cartridge is visualized as a separate folder.
Modern use cases and workflows have created a need to
seamlessly integrate tape with disk storage rather than
managing tape separately. Recently, proprietary solutions
have been developed, such as LTFS EE1 (enterprise edition)
[8], that integrate disk and tape with the preservation of a
common name space, enabling data to be transparently
migrated between disk and tape. In the remainder of this
paper we focus on two open source solutions for integrating
disk and tape that provide some of the core functionalities
present in proprietary solutions: LTFS Data Management
(LTFS DM) for file-based storage and Swift HLM (High
Latency Media) for object-based storage.

II. OPEN SOURCE LTFS DM FOR FILE ON TAPE
LTFS DM is a software component that enables a standard

Linux disk file system to be converted into a disk and tape file
system, as shown in Fig. 1. LTFS DM exposes the original
disk file system name space to the user and enables migration
of file data to the locally attached tape storage, in this example
via LTFS LE. Upon file access, data on tape is transparently
recalled to the disk file system and served to the
user/application, with the additional latency caused by tape
access and transfer times. Alternatively, data on tape can be
explicitly recalled, e.g. based on automated policies that cause
the recall of a set of files that than become accessible with the
shorter latency of disk or even SSD (Solid State Drive) access.

Fig. 1. LTFS DM converts a Linux based disk file system into a disk and
tape file system. Users/applications see and access the same file namespace
as if accessing the original disk file system, but file data can be moved
between disk and tape.

Linear Tape File System, IBM Spectrum Storage, and IBM Spectrum Archive are trademarks
of International Business Machines Corp., registered in many jurisdictions worldwide. LTO is
a registered trademark of Hewlett Packard Enterprise, International Business Machines
Corporation and Quantum Corporation in the United States and other countries. Microsoft and
Azure are registered trademarks of Microsoft Corporation in the United States and/or other
countries.

A. LTFS DM user API/function
Migration and explicit recall operations and the migration

status check of a file are performed using the command-line
interface of LTFS DM. Transparent recall operations are
initiated on read, write, or truncate system calls (POSIX).

B. LTFS DM design overview
LTFS DM seamlessly integrates tape with standard disk

file systems. This is achieved using a FUSE overlay file
system that makes location of data invisible to the standard
POSIX system calls, see Fig. 2. As a result, applications do
not have to be rewritten to leverage tape. When a file is
migrated to tape, a small stub that contains all the necessary
information to recall it back from tape in the future is placed
on disk. The FUSE overlay file system transparently handles
changes of the data location. In addition, the original disk file
path is stored on tape to recover from losses of the stub. To
minimize access time to data on tape, requests are queued so
that recall requests to data on an already-mounted tape
cartridge are prioritized over recall requests for other
cartridges, thereby minimizing the number of high latency
mount operations. The LTFS DM software and
documentation are available on GitHub [9].

Fig. 2. LTFS DM architecture. A FUSE overlay file system is used to map
the original disk file system API and namespace but also to intercept and
process user data access or data management requests.

III. OPEN SOURCE SWIFTHLM FOR OBJECT ON TAPE
Swift High Latency Media (Swift HLM) is a software

component for integrating OpenStack Swift object storage
[10] with a high-latency storage backend, such as optical or
tape libraries, as shown in Fig. 3. The HLM backend provides
a file system that integrates a low latency media (LLM)
storage such as a disk-based cache and an HLM storage such
as tape, as well as an ILM (Information Lifecycle
Management) function and an API for moving data between
LLM and HLM.

Fig. 3. SwiftHLM extends Swift object API and provides an archiving (ILM)
function for moving (migrate/recall) object data between low- and high-
latency media (LLM and HLM)storage.

A. SwiftHLM user and backend APIs
 Users or applications store and read object data using the
object API operations PUT and GET. Swift stores object data
first to the LLM backend using the file system interface of the
backend. Swift HLM extends the object API with a new type
of archiving operations (namely migrate, recall, and status) by
reusing POST and GET standard object primitives (see [11]

for syntax details). It queues object or container ILM
operations and processes them asynchronously by invoking
the file ILM storage backend operations on the involved
storage nodes of a Swift cluster.

B. SwiftHLM internals
Swift HLM components are shown in blue in Fig. 4 in an

example of a multi-node deployment.

Fig. 4. SwiftHLM components (blue) multi-node deployment using single-
node LTFS DM storage backends (green) and connectors (orange).

 The SwiftHLM middleware running on Swift proxy nodes
implements the archiving API operations and queues object
ILM requests by storing them in a special container. Object
ILM requests then get dispatched across Swift storage nodes
by the Dispatcher. Finally, the Handler in each involved Swift
storage node determines the file that stores a full copy or an
erasure coded (EC) part of the object data and calls the
backend ILM operations on the file.

 Backend ILM operations are invoked via a generic
backend API using a simple backend-specific connector that
performs the necessary API translation. An example
connector for a simulated storage backend and a connector for
the LTFS DM storage backend are part of the open-sourced
SwiftHLM software [11]. Any ILM-capable file-based
backend can easily be supported in that fashion.

 We are currently considering creating a SwiftHLM variant
that supports invoking object ILM operations by writing
object or container extended attributes (EAs), so to support
archiving operations for both the Swift and S3 APIs of Swift.
SwiftHLM internal processing could also be simplified for
backends capable of intercepting and acting upon events of
Swift storing object EA as file backend EA.

 In conclusion, while tape is the most attractive media from
a TCO perspective, the software components described here
are key to its broader adoption in environments that use open
filesystems or object-based storage.

REFERENCES
[1] Tape cost, https://www.lto.org/2017/03/tape-and-disk-storage-what-

do-they-really-cost
[2] ESG Economic Validation Summary Report, https://www.lto.org/wp-

content/uploads/2018/08/ESG-Economic-Validation-Summary.pdf
[3] INSIC Tape Roadmap, http://www.insic.org
[4] S. Furrer et al., IEEE Trans. on Magn., 54, 2 (2018) 3100308
[5] LTFS standard https://www.snia.org/ltfs
[6] IBM LTFS SDE1 https://www.ibm.com/downloads/cas/7VBLKOWZ
[7] IBM LTFS LE1 https://www.ibm.com/downloads/cas/0O4JPLRD
[8] IBM LTFS EE1 https://www.ibm.com/downloads/cas/MEJYJBAG
[9] LTFS DM https://github.com/ibm-research/LTFS-Data-Management
[10] OpenStack Swift https://github.com/openstack/swift
[11] SwiftHLM https://github.com/ibm-research/swifthlm

