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Abstract—Recently developed open-source software 
components that facilitate the integration of tape into open 
compute and cloud storage environments are described. 
Workload trends and economic aspects motivating the use of 
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I. INTRODUCTION 
The continued exponential growth in data combined with 

the recent slow-down in areal density and $/GB scaling of 
HDD is driving interest in lower cost alternatives. Magnetic 
tape is well suited to meet this demand due to its high 
reliability, low power and very low total cost of ownership 
(TCO). Already in 2017, the LTO (linear tape open) program 
reported that the cost of LTO7 media had fallen to less than 
one cent per GB [1].  More recently, in a 2018 update to a 
previous study, Enterprise Strategy Group found the TCO of 
an LTO8 tape solution to be only 14% of that of an all disk 
solution [2]. The huge potential to continue scaling areal 
density and hence to further reduce cost per TB is further 
driving interest in tape. For example, the latest Information 
Storage Industry Consortium (INSIC) Tape Technology 
Roadmap predicts that the areal density of tape systems can 
continue scaling at the historical rate of about 34% CAGR 
until at least 2029, enabling the scaling of cartridge capacity 
from the current state of the art of 20TB native capacity to 
many hundreds of TB [3].  The potential to continue scaling 
tape areal density has also recently been experimentally 
validated with a demonstration of tape recording at 201 
Gb/in2, more than 17x the areal density of the latest 20TB 
cartridges [4].  

Tape’s low cost and scaling potential are driving 
widespread interest in tape by hyperscale cloud companies 
such as Google and MS Azure. One of the barriers to wider 
tape use in other cloud environments is the perception that 
tape is difficult to use and manage. This perception probably 
arose because tape is a block storage device that historically 
was managed using proprietary software solutions with a 
separate database to manage the metadata of the data stored 
on tape. However, recently there has been significant 
progress in the development of technology that makes tape 
easier to use, manage and integrate with disk-based 
infrastructure. For example, the linear tape file system 
(LTFS) introduced by the LTFS Consortium in 2010 is an 
open, self-describing file system for tape cartridges based on 
technology developed by IBM [5].  In its earliest form, IBM 
LTFS SDE1 (single drive edition) [6], it enables a user to 
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mount a tape cartridge as a file system and browse it using a 
standard file browser on Linux/Windows/Mac, including 
drag and drop functionality. More recently, IBM LTFS LE1 
(library edition), which is available free of charge [7], 
extended this functionality to an entire robotic tape library 
where each cartridge is visualized as a separate folder. 
Modern use cases and workflows have created a need to 
seamlessly integrate tape with disk storage rather than 
managing tape separately. Recently, proprietary solutions 
have been developed, such as LTFS EE1 (enterprise edition) 
[8], that integrate disk and tape with the preservation of a 
common name space, enabling data to be transparently 
migrated between disk and tape. In the remainder of this 
paper we focus on two open source solutions for integrating 
disk and tape that provide some of the core functionalities 
present in proprietary solutions: LTFS Data Management 
(LTFS DM) for file-based storage and Swift HLM (High 
Latency Media) for object-based storage. 

II. OPEN SOURCE LTFS DM FOR FILE ON TAPE 
LTFS DM is a software component that enables a standard 

Linux disk file system to be converted into a disk and tape file 
system, as shown in Fig. 1. LTFS DM exposes the original 
disk file system name space to the user and enables migration 
of file data to the locally attached tape storage, in this example 
via LTFS LE. Upon file access, data on tape is transparently 
recalled to the disk file system and served to the 
user/application, with the additional latency caused by tape 
access and transfer times. Alternatively, data on tape can be 
explicitly recalled, e.g. based on automated policies that cause 
the recall of a set of files that than become accessible with the 
shorter latency of disk or even SSD (Solid State Drive) access. 

      

Fig. 1. LTFS DM converts a Linux based disk file system into a disk and 
tape file system. Users/applications see and access the same file namespace 
as if accessing the original disk file system, but file data can be moved 
between disk and tape. 
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A. LTFS DM user API/function 
Migration and explicit recall operations and the migration 

status check of a file are performed using the command-line 
interface of LTFS DM. Transparent recall operations are 
initiated on read, write, or truncate system calls (POSIX). 

B. LTFS DM design overview 
LTFS DM seamlessly integrates tape with standard disk 

file systems. This is achieved using a FUSE overlay file 
system that makes location of data invisible to the standard 
POSIX system calls, see Fig. 2. As a result, applications do 
not have to be rewritten to leverage tape. When a file is 
migrated to tape, a small stub that contains all the necessary 
information to recall it back from tape in the future is placed 
on disk. The FUSE overlay file system transparently handles 
changes of the data location. In addition, the original disk file 
path is stored on tape to recover from losses of the stub. To 
minimize access time to data on tape, requests are queued so 
that recall requests to data on an already-mounted tape 
cartridge are prioritized over recall requests for other 
cartridges, thereby minimizing the number of high latency 
mount operations. The LTFS DM software and 
documentation are available on GitHub [9]. 

 

Fig. 2. LTFS DM architecture. A FUSE overlay file system is used to map 
the original disk file system API and namespace but also to intercept and 
process user data access or data management requests. 

III. OPEN SOURCE SWIFTHLM FOR OBJECT ON TAPE 
Swift High Latency Media (Swift HLM) is a software 

component for integrating OpenStack Swift object storage 
[10] with a high-latency storage backend, such as optical or 
tape libraries, as shown in Fig. 3. The HLM backend provides 
a file system that integrates a low latency media (LLM) 
storage such as a disk-based cache and an HLM storage such 
as tape, as well as an ILM (Information Lifecycle 
Management) function and an API for moving data between 
LLM and HLM.  

 

Fig. 3. SwiftHLM extends Swift object API and provides an archiving (ILM) 
function for moving (migrate/recall) object data between low- and high-
latency media (LLM and HLM)storage.  

A. SwiftHLM user and backend APIs 
 Users or applications store and read object data using the 
object API operations PUT and GET. Swift stores object data 
first to the LLM backend using the file system interface of the 
backend. Swift HLM extends the object API with a new type 
of archiving operations (namely migrate, recall, and status) by 
reusing POST and GET standard object primitives (see [11] 

for syntax details). It queues object or container ILM 
operations and processes them asynchronously by invoking 
the file ILM storage backend operations on the involved 
storage nodes of a Swift cluster.  

B. SwiftHLM internals 
Swift HLM components are shown in blue in Fig. 4 in an 

example of a multi-node deployment.  

  

Fig. 4. SwiftHLM components (blue) multi-node deployment using single-
node LTFS DM storage backends (green) and connectors (orange). 

 The SwiftHLM middleware running on Swift proxy nodes 
implements the archiving API operations and queues object 
ILM requests by storing them in a special container. Object 
ILM requests then get dispatched across Swift storage nodes 
by the Dispatcher. Finally, the Handler in each involved Swift 
storage node determines the file that stores a full copy or an 
erasure coded (EC) part of the object data and calls the 
backend ILM operations on the file.  

 Backend ILM operations are invoked via a generic 
backend API using a simple backend-specific connector that 
performs the necessary API translation. An example 
connector for a simulated storage backend and a connector for 
the LTFS DM storage backend are part of the open-sourced 
SwiftHLM software [11]. Any ILM-capable file-based 
backend can easily be supported in that fashion. 

 We are currently considering creating a SwiftHLM variant 
that supports invoking object ILM operations by writing 
object or container extended attributes (EAs), so to support 
archiving operations for both the Swift and S3 APIs of Swift. 
SwiftHLM internal processing could also be simplified for 
backends capable of intercepting and acting upon events of 
Swift storing object EA as file backend EA.  

 In conclusion, while tape is the most attractive media from 
a TCO perspective, the software components described here 
are key to its broader adoption in environments that use open 
filesystems or object-based storage. 
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