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ODSA: A New Server Subgroup (Incubation)

* Extending Moore’s Law

*  Domain-Specific Architectures: Programmable ASICs to accelerate high-intensity workloads (e.g. Tensorflow,
Network Flow Processor, Antminer...)

« Chiplets: Build complex ASICs from multiple die, instead of as monolithic devices, to reduce development
time/costs and manufacturing costs.

*  Open Domain-Specific Architecture: An architecture to build domain-specific products
* Today: All multi-chiplet products are based on proprietary interfaces
*  Tomorrow: Select best-of-breed chiplets from multiple vendors
* Incubating a new group, to define a new open interface, build a PoC
* Today is our first workshop as an OCP project!

Thanks to:

Achronix: Quinn Jacobson, Manoj Roge; Aquantia: Ramin Farjad; Avera Semi: Dan Greenberg, Mark Kuemerle, Wolfgang Sauter; Ayar Labs:
Shahab Ardalan; ESNet: Yatish Kumar; Kandou: Brian Holden, Jeff McGuire; Netronome : Sujal Das, Jim Finnegan, Jennifer Mendola, Brian
Sparks, Niel Viljoen; NXP: Sam Fuller; OCP: Bill Carter, Archna Haylock, Dharmesh Jani, Steve Roberts, Seth Sethapong, John Stuewe, Aaron
Sullivan, Siamak Tavallaei ; Samtec: Marc Verdiell; Sarcina: Larry Zu; zGlue: Jawad Nasrullah.
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Domain-Specific Architectures
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Better Power Performance Better Power Performance
Cloud Workload

1 Port-blast100 | VXLAN | 1:2 Flows:Rules
Intel Xeon Gold 6138 | Intel Xeon Gold 6138P (Arria 10 GX 1150) | Netronome NFP

“ANew Golden Age for Computer Architecture Google TPU vs. CPU and GPU Netronome NFP vs. CPU and FPGA

John L. Hennessy, David A. Patterson _ ‘ - . _ .
Source: “An in-depth look at Google’s first Tensor Processing Unit (TPU),” Google Cloud, May 2017 Source: Netronome, based on internal benchmarks and industry reports related to Xeon CPUs and Atria FPGAS

Communications of the ACM, February 2019, Vol. 62 No. 2, Pages 48-60 P
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Monolithic vs Chiplets

Today - Monolithic Area, Power and Cost for Shrink vs. Integration

Integration Investment

Shrink Investment

Y A AMD Data
Base Investment
4 Die are ~30% Integration Die Cost NN
cheaper than a Shrink Die Cost NG
Tomorrow - Chiplets single large die Base Die Cost
Integration Power I
o= Shrink Power G
Base Power | ——
Integration Area I
Shrink Area  IEEEN————
Shrink: Monolithic process shrink Base Ares
Integration: Multi-chip on same process
D 50 100 150 200 250 300 350 400
Integration provides nearly all the benefits of a shrink at a fraction of Cost MDieCost MSERDES mMemory M logic

the cost, because of efficient inter-chiplet interconnect

https://www.netronome.com/media/documents/WP_ODSA_Open_Accelerator_Architecturesef
>
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COST & PERFORMANCE DISPARITY IN SCALING

Bandwidth density/energy
Gbps/mm)/(pl/b)

Interconnect Figure Of Merit (FOM)
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PHY Layer Options

Interface Comparisons

Interop

Legacy Tech

Si FOM (Density/power)

Lam FOM (Density,/Power)

BW Density (Si)

BW Density (Laminate)

Power FOM (larger is better)
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Common Logical Layer

7 N Bandwidth at all Cost
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https://www.netronome.com/media/documents/WP_ODSA_Open_Accelerator_Architecture.pdf



Domain-specific accelerators

v Pt DDR*/GDDR*

Host-attached programmable logic optimized for an
application domain

Tensorflow, Netronome NFP, Crypto, loT,... Host S
. . . . Interface Interface
Domain-specific accelerators contain lots of generic
logic ~35-45% of silicon area, development time . _
omm nterrace
Network, Host, Memory Interfaces Agent Agent
General-purpose CPUs Network

Interface

SRAM, interconnect To Network

RISC CPU

Domain-specific logic works in coordination with Interface Network-on-a-Chip (NOC)
host and/or CPU S Agent Comm + Interface Agents

Ideally |
Investment in a DSA should be limited to the .
domain-acceleration logic N

In reality .

Domain
Buy IP for the “non-core” parts, spend $$’s test Acceleration
and integration St By Logie

Consume. Collaborate. Contribute.



Multi-Chiplet Reference Architecture for DSA

IP Qualification
Architecture
Verification

Physical

Software

Prototype

Test and Validation

Verified IP for inter-chiplet
communication

Leverage reference architecture.

Focus investment on domain-specific
logic.

Reuse chiplets instead of IP for 40% of the
functions in a monolithic design

Open source firmware and software for
host-attached operation

Aim for reference package design with
area, power budgets and pinouts for
components

Develop workflow for chiplets

Consume. Collaborate. Contribute.
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Host Memory
Interface Interface

Scalable Fabric

——t— (NOC + Protocols
+ Fabric Agents)

Fabric
Agent

I/O Chiplet

o Acceleration
Multi-Die Substrate Logic

Package Boundary



Open Intere for Chiplet-Based Design

Mettory ,‘ _ Applicati Firmware Infrastructure for:
/ W ccormare. [ 8 pplication Accelerator Use, Host Integration!

Engines ) Accelerators

Switch Fabric

Intercon_ nect
mg(;_eotgrlmce ﬁggks ( Coherent Instruction-Driven
Transport Protocol Transfer

Device Processing | Pcle
Cores e (CCIX2 or TileLink?or..) | (ISF Transport Layer)!

S Routing
; Network (To Be Developed From ISF Routing Layer)

< Link Inter-Chiplet Intra-Chiplet
in (e.g. PCIe?, TileLink? or new Link Layer) || (From ISF Link Layer")

> SSPNITN o= o |[ pipe Acapter | pipE Adapter [ pipE Adapter |

/ | PCle? > USR Bunch of Wires
~ _ I

7 | - Open Chiplets - R

P Connectivity Substrate Organic Substrate Packaging' + Interconnect

FPGA or Specification

Architecture Interface

ManyCore
Chiplet BNIEE ‘ RISC? | SerDes KX
ORGANIC SUBSTRATE
" New Open IP/Specification Source: ODSA
) ) ) . 2 Existing Open Standard
Multiple chiplets need to function as though they are on one die *

&
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Need a Scalable Interface

Open Rack

Multiple OCP projects use
accelerators

Open architectural interface to
support accelerator designs across
multiple carrier cards

Power, management, reliability
requirements vary across sockets

Enable a collection of ODSA-
compliant chiplets, packages,
sockets, in the OCP marketplace

OCP Accelerator Module
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ODSA Landing Zones

| Network /O Host /0

NIC 2.0 Dual port x 25 X16 PCle Gen 3
NIC 3.0 Dual port x 200 SFF: x16 PCle Gen 4/Gen 5 Small: 80w Small/Large
LFF: x32 PCle Gen 4/Gen 5 Large: 150w
M.2 N/A Single: x4 PCle Gen 3/Gen 4 Single: 12w Single: 22x110
M.2 Dual Dual: x8 PCle Gen 3/Gen 4 Dual: 20w Dual: 46x110
OAM 8x16 SerDes Lanes Typical: x16 PCle 12V: 350w 102x165
48V: 700w
Olympus Via x16 PCle Cards 1x16 PCle  75W-300W PCle AIC FHHL PCle
Tioga Pass Up to 100Gbps SH x32 PCle Gen3 6.5x20inch

Data from Ron Renwick, John Stuewe, Siamak Tavallaei, Whitney Zhao
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Cross-chiplet ODSA fabric proposal

Fabric Chiplet

Applicati Firmware Infrastructure for:
pplication Accelerator Use, Host Integration’
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Progress Since the Last Workshop

* Timeline:
— ODSA Announced 10/1/18 [ companies
— White Paper 12/5/18 10 companies
— First Workshop 01/28/19 35 companies
— Joined OCP 03/15/19
— Today 03/28/19 53 companies
* PoC
— ldentified components, use cases
» Standards
— Characterizing PHY, new interface proposal
* Business

— Survey, business model

Consume. Collaborate. Contribute.




TIL In the last six months

* We're solving the right problem, tbd on whether it’s the right solution.

» Analog (and cache coherence) engineers have lots of opinions, likely justified,
but also confusing for mere mortals.

* How you do business drives chiplet economics and your technology choices.
* Our interface definition must recognize this diversity while focusing our effort.

* You need a new business/workflow model that make chiplets work across this
- diversity
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. Dartio]

Please Help! : Join a Workstream

Join the PoC, Build fast: Join Interface/Standards: Join Business, IP and workflow:
(Quinn Jacobson/Jawad Nasrullah) (Mark Kuemerle/Aaron Sullivan) (Sam Fuller/Jeff McGuire)
Develop software Define test and

assembly workflow

\ Package/

) Integration
Fir re Infrastructure for: Part
Accelerator Use, Host Integration' Integrated System on a Subsu-ate arencr;

Coherent Instruction-Driven i
Transport Protocol Transfer DMA Complex Packaging MCM RF Product
(CCIX2 or TileLink?or..) {| (ISF Transport Layer)! Complex ASIC Development Partner

MCM Design
SI/PI

Application

Provide
ODSA
chiplets

Routing
(To Be Developed From ISF Routing Layer)

Inter-Chiplet Intra-Chiplet
(e.g. PCle?, TileLink? or new Link Layer) | (From ISF Link Layer')

Network

P 2 e <

| USR/XSR/BoW IP \ ASIC Provider

o pipE [ pcapter]] _pioe Adprer |
PCle? 2 USR Bunch of Wires

Substrate Organic Substrate Packaging' + Inf arconnect

ORGANIC SUBSTRATE

ASIC High-
Level Design
Partner

Provide FPFGAIP  Define oo | N P O -

Develop

Packaging + Architectural g Goen S s 0054

Socket, bevBoard interface Provide PHY Provide Chiplet IP
technology

Workstream contact information at the
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