

ODSA: Technical Introduction

Bapi Vinnakota, Netronome ODSA Project Workshop March 28, 2019

Consume. Collaborate. Contribute.

ODSA: A New Server Subgroup (Incubation)

- Extending Moore's Law
 - Domain-Specific Architectures: Programmable ASICs to accelerate high-intensity workloads (e.g. Tensorflow, Network Flow Processor, Antminer...)
 - Chiplets: Build complex ASICs from multiple die, instead of as monolithic devices, to reduce development time/costs and manufacturing costs.
- Open Domain-Specific Architecture: An architecture to build domain-specific products
 - Today: All multi-chiplet products are based on proprietary interfaces
 - Tomorrow: Select best-of-breed chiplets from multiple vendors
 - Incubating a new group, to define a new open interface, build a PoC
 - Today is our first workshop as an OCP project!

Thanks to:

Achronix: Quinn Jacobson, Manoj Roge; Aquantia: Ramin Farjad; Avera Semi: Dan Greenberg, Mark Kuemerle, Wolfgang Sauter; Ayar Labs: Shahab Ardalan; ESNet: Yatish Kumar; Kandou: Brian Holden, Jeff McGuire; Netronome : Sujal Das, Jim Finnegan, Jennifer Mendola, Brian Sparks, Niel Viljoen; NXP: Sam Fuller; OCP: Bill Carter, Archna Haylock, Dharmesh Jani, Steve Roberts, Seth Sethapong, John Stuewe, Aaron Sullivan, Siamak Tavallaei ; Samtec: Marc Verdiell; Sarcina: Larry Zu; zGlue: Jawad Nasrullah.

Domain-Specific Architectures

Tailor architecture to a domain*

- Server-attached devices programmable, not hardwired
- Integrated application and deployment-aware development of devices, firmware, systems, software
- 5-10X power performance improvement
- Big more of a processor to I/O mismatch => more memory
- Each serves a smaller market

Domain-Specific for Machine Learning and AI

Google TPU vs. CPU and GPU

Source: "An in-depth look at Google's first Tensor Processing Unit (TPU)," Google Cloud, May 2017

Source: Netronome, based on internal benchmarks and industry reports related to Xeon CPUs and Arria FPGA.

Domain-Specific for Networking and Security

Cloud Workload 1 Port-blast100 | VXLAN | 1:2 Flows:Rules

Intel Xeon Gold 6138 | Intel Xeon Gold 6138P (Arria 10 GX 1150) | Netronome NFP

Netronome NFP vs. CPU and FPGA

Monolithic vs Chiplets

Integration provides nearly all the benefits of a shrink at a fraction of the cost, because of efficient inter-chiplet interconnect

Area, Power and Cost for Shrink vs. Integration

https://www.netronome.com/media/documents/WP_0DSA_0pen_Accelerator_Architecture.pdf

COST & PERFORMANCE DISPARITY IN SCALING

High Density Multi Chip Packaging interconnect

- 0.1-10mm; 500IO/mm shoreline; 0.1-1.0pJ/bit
- FOM_{LongReach}=(1Tb/mm)/(1pJ/b)=1,000
- FOM_{shortReach}=(1Tb/mm)/(0.1pJ/bit)=10,000
- Latency=2.5ns

SOC-like FOM

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

PHY Layer Options

Interface Comparisons

Domain-specific accelerators

- Host-attached programmable logic optimized for an application domain
 - Tensorflow, Netronome NFP, Crypto, IoT,...
- Domain-specific accelerators contain lots of generic logic ~35-45% of silicon area, development time
 - Network, Host, Memory Interfaces
 - General-purpose CPUs
 - SRAM, interconnect
 - Domain-specific logic works in coordination with host and/or CPU SW
- Ideally
 - Investment in a DSA should be limited to the domain-acceleration logic
- In reality
 - Buy IP for the "non-core" parts, spend \$\$'s test and integration

Multi-Chiplet Reference Architecture for DSA

Design Function	Value
IP Qualification	Verified IP for inter-chiplet communication
Architecture	Leverage reference architecture.
Verification	Focus investment on domain-specific logic.
Physical	Reuse chiplets instead of IP for 40% of the functions in a monolithic design
Software	Open source firmware and software for host-attached operation
Prototype	Aim for reference package design with area, power budgets and pinouts for components
Test and Validation	Develop workflow for chiplets

Open Interface for Chiplet-Based Design

² Existing Open Standard

Multiple chiplets need to function as though they are on one die

Need a Scalable Interface

Multiple OCP projects use accelerators

Open architectural interface to multiple carrier cards

Power, management, reliability

Enable a collection of ODSAcompliant chiplets, packages, sockets, in the OCP marketplace

requirements vary across sockets

support accelerator designs across

ODSA Landing Zones

	Network I/O	Host I/O	Power	
NIC 2.0	Dual port x 25	X16 PCIe Gen 3	25w	
NIC 3.0	Dual port x 200	SFF: x16 PCIe Gen 4/Gen 5 LFF: x32 PCIe Gen 4/Gen 5	Small: 80w Large: 150w	
M.2 M.2 Dual	N/A	Single: x4 PCle Gen 3/Gen 4 Dual: x8 PCle Gen 3/Gen 4	Single: 12w Dual: 20w	
OAM	8x16 SerDes Lanes	Typical: x16 PCIe	12V: 350w 48V: 700w	
Olympus	Via x16 PCIe Cards	1x16 PCIe	75W-300W PCIe AIC	
Tioga Pass	Up to 100Gbps SH	x32 PCIe Gen3		

Data from Ron Renwick, John Stuewe, Siamak Tavallaei, Whitney Zhao

Small/Large

Single: 22x110 Dual: 46x110 102x165

FHHL PCIe 6.5x20inch

Cross-chiplet ODSA fabric proposal

Progress Since the Last Workshop

• Timeline:

- ODSA Announced 10/1/18
- White Paper
- First Workshop
- Joined OCP
- Today

12/5/18 01/28/19 03/15/19 03/28/19 7 companies 10 companies 35 companies

53 companies

- PoC
 - Identified components, use cases
- Standards
 - Characterizing PHY, new interface proposal
- Business
 - Survey, business model

TL in the last six months

- We're solving the right problem, tbd on whether it's the right solution.
- Analog (and cache coherence) engineers have lots of opinions, likely justified, but also confusing for mere mortals.
- How you do business drives chiplet economics and your technology choices.
- Our interface definition must recognize this diversity while focusing our effort. You need a new business/workflow model that make chiplets work across this diversity

How to Participate Please Help! : Join a Workstream

Join the PoC, Build fast: (Quinn Jacobson/Jawad Nasrullah) Join Interface/Standards: (Mark Kuemerle/Aaron Sullivan)

(Sam Fuller/Jeff McGuire)

Provide Chiplet IP

Join Business, IP and workflow:

