

POC Requirements and use cases

ODSA Project Workshop

March 28, 2019

Consume. Collaborate. Contribute.

POC Requirements and use cases

Quinn A. Jacobson, Ph.D. Strategic Architect Achronix

Consume. Collaborate. Contribute.

Why do a Proof-of-Concept

- Learn
- Reduce Risk
- Convince Skeptics

POC Unique Challenges

- Problem has to be hard enough that you expose the issues
- Solution has to be easy enough that you can do it fast

Multiple dimensions of POC

Architectural

- Validate interfaces protocols
- Evaluate performance issues
- Develop software programming models
- Physical
 - Explore chiplet integration and packaging
 - Validate power distribution
 - Develop high-speed I/O solutions
- Business
 - Force information sharing at a bare die-level
 - Exposing issues of sharing sensitive business metrics
 - Validate risk and value sharing models

Ambitious POC

- Smart Network Interface Card
 - A NIC that offloads work from the host CPU
 - Virtualization, SDN and NFV moved more networking tasks from hardware to software on the host...
 - ... now we need to hardware accelerate those software tasks
 - Good candidate for POC because everyone wants a domain-specific accelerator, but lots of custom requirements and configurations
- To make it fun lets also cover Computational Storage Solutions
 - Another important category of domain specific accelerators
 - Leverage some of the same connectivity building blocks of Smart NICs

Smart NIC

- Programmable Engine Task
 - Match based on Src/Dst/transaction (go back to host software if no match)
 - Security checks
 - Optional TCP/IP and HTTP processing
 - Potentially simple substitutions in header
 - Potentially encrypt/decrypt
- **Programmable Engine Requirements**
 - Highly flexible because protocols and tasks change over time
 - Want low-latency and high-throughput
- Programmable Engine Implementation
 - Some combination of Configurable ASICs, CPU cores, and FPGAs
 - Configured as (a) part of NIC, (b) sidecar to NIC, or (c) bump in wire before NIC

Major Units

- Network Processor
 - For networking support
- CPU module
 - For control plane
 - Storage connectivity
- FPGA
 - For data plane

Connectivity

- PCIe Gen3 x8 (64 Gbps)
 - To host
 - To represent chiplet link
- 40G Ethernet
 - Performance match to PCIe Gen3 x8
- DDR3 memory

POC – Bump-in-the-wire SmartNIC

POC – SmartNIC w/ data accelerator

POC – Computational Storage

POC – Computational Storage

POC – SW Dev System

Multiple dimensions of POC

Architectural

- Validate interfaces protocols
- Evaluate performance issues
- Develop software programming models
- Physical
 - Explore chiplet integration and packaging
 - Validate power distribution
 - Develop high-speed I/O solutions
- Business
 - Force information sharing at a bare die-level
 - Exposing issues of sharing sensitive business metrics
 - Validate risk and value sharing models

