POC Requirements and use cases

ODSA Project Workshop
March 28, 2019
POC Requirements and use cases

Quinn A. Jacobson, Ph.D.
Strategic Architect
Achronix
Why do a Proof-of-Concept

- Learn
- Reduce Risk
- Convince Skeptics
POC Unique Challenges

• Problem has to be hard enough that you expose the issues
• Solution has to be easy enough that you can do it fast
Multiple dimensions of POC

• Architectural
 − Validate interfaces protocols
 − Evaluate performance issues
 − Develop software programming models

• Physical
 − Explore chiplet integration and packaging
 − Validate power distribution
 − Develop high-speed I/O solutions

• Business
 − Force information sharing at a bare die-level
 − Exposing issues of sharing sensitive business metrics
 − Validate risk and value sharing models
Ambitious POC

- Smart Network Interface Card
 - A NIC that offloads work from the host CPU
 - Virtualization, SDN and NFV moved more networking tasks from hardware to software on the host...
 ... now we need to hardware accelerate those software tasks
 - Good candidate for POC because everyone wants a domain-specific accelerator, but lots of custom requirements and configurations

- To make it fun lets also cover Computational Storage Solutions
 - Another important category of domain specific accelerators
 - Leverage some of the same connectivity building blocks of Smart NICs
Smart NIC

- Programmable Engine Task
 - Match based on Src/Dst/transaction (go back to host software if no match)
 - Security checks
 - Optional TCP/IP and HTTP processing
 - Potentially simple substitutions in header
 - Potentially encrypt/decrypt

- Programmable Engine Requirements
 - Highly flexible because protocols and tasks change over time
 - Want low-latency and high-throughput

- Programmable Engine Implementation
 - Some combination of Configurable ASICs, CPU cores, and FPGAs
 - Configured as (a) part of NIC, (b) sidecar to NIC, or (c) bump in wire before NIC
POC

40G Ethernet copper
40G Ethernet optical
X8 PCIe G3 (64Gbps)
Major Units

- Network Processor
 - For networking support
- CPU module
 - For control plane
 - Storage connectivity
- FPGA
 - For data plane
Connectivity

• PCIe Gen3 x8 (64 Gbps)
 - To host
 - To represent chiplet link
• 40G Ethernet
 - Performance match to PCIe Gen3 x8
• DDR3 memory
POC

40G Ethernet copper
40G Ethernet optical
X8 PCIe G3 (64Gbps)
POC - NIC

40G Ethernet copper
40G Ethernet optical
X8 PCIe G3 (64Gbps)
POC – Bump-in-the-wire SmartNIC

40G Ethernet copper
40G Ethernet optical
X8 PCIe G3 (64Gbps)
POC – SmartNIC w/ data accelerator

40G Ethernet copper
40G Ethernet optical
X8 PCIe G3 (64Gbps)
POC – Computational Storage

40G Ethernet copper
40G Ethernet optical
X8 PCIe G3 (64Gbps)
POC – Computational Storage

40G Ethernet copper
40G Ethernet optical
X8 PCIe G3 (64Gbps)
POC - Alternative

40G Ethernet copper
40G Ethernet optical
X8 PCIe G3 (64Gbps)
POC – SW Dev System

40G Ethernet copper
40G Ethernet optical
X8 PCIe G3 (64Gbps)

HOST

NETWORK

STORAGE

CPU

NFP

FPGA

DRAM

DRAM
Multiple dimensions of POC

• Architectural
 - Validate interfaces protocols
 - Evaluate performance issues
 - Develop software programming models

• Physical
 - Explore chiplet integration and packaging
 - Validate power distribution
 - Develop high-speed I/O solutions

• Business
 - Force information sharing at a bare die-level
 - Exposing issues of sharing sensitive business metrics
 - Validate risk and value sharing models
THANK YOU