

Service Oriented Immersion Cooling with **48V Power Solution**

Lentis Pai, Director, Wiwynn

Advanced Cooling

Compute Project

Purpose

- power consumption with energy saving
- for immersion cooling, such as redefine life/reliability, specific components...etc

In order to meet the demand of the fast-growing

 Contribute the specifications and send a message to the ecosystem vendors to increase the interest to develop the commodities and components together

Contents

- Existing Air Cooling Solution
- Immersion Cooling Solution
- Immersion Cooling Development
- Wiwynn 48V Immersion Cooling Solution
- Tank Management
- Investigation

Cooling Capability

Requirement **Cooling Airflow**

Rack

oolin

Fan Lower Ambient Temp.

Cold Water

Cold Water for ASICs

Space

Heatsink Radiator

Cooling Capability

Immersion Cooling PUE 1.2~2 PUE 1.02~1.08 Low Airflow Requirement Air Immersion **Energy Saving** Higher Ambient Temp. **Higher Density** Warm Water Cooling **35°(**

Efficiency

Seawolf Tank

Critica

Low Leakage

Open. Together.

dvance

Conden

2020 2021~ **Optimize Tank for Immersion Cooling** Tank Next Gen Tank with **Q2 2020 Optimized Board ~ Specifications** White Papers

Q4, 2019 Q3, 2019

Service Oriented Immersion Cooling with 48V Power Solution

48V Immersion Cooling Solution

Power Solution Solution Features

Dimension	1200mm(L) x 1200mr
Cooling Capability	60kW
Server Quantity	100 Nodes
Mother Board	OCP Server Board (Ti
Power Input for Server	48 VDC by Bus Bar
Switch	4 Switches

A Service Oriented Immersion Cooling Tank with 48V

 $m(W) \times 1250mm(H)$

ioga Pass)

Cartridge Design

Two boards face to face in one cartridge < 1.5U **No modification for MB**

Board and Switch Matrix

Tank Top View

4 Switches

10 Cartridges * 5 Column 100 Boards

Power Solution

Two 48V power shelves to support 60 kW (Optional)

Cartridge

Bus Bar Clip

Power Bus Bar

Power bus bar for power delivery

Rear Side

Separated power deliver by 5 branches for each cartridge column

Active Condenser

Primary Condenser

Secondary Condenser

Trigger forced convection to direct vapor to contact the condenser during board maintenance

Open. Together.

Advanced

Condenser

Monitoring and Safety

Temperature Sensors Fluid/Vapor/Water

Moisture Sensors Dehumidification

Liquid Lever Sensor

Pressure Sensor Bellows System

Filter System & Pump

Power Shelf & Power Meter

Open. Together.

Monicori

Safety

Critica

Tank Management

Water Valve

Water Temperature

Liquid Temperature

Tank Pressure

System Power

Top Lid Detector

Tank Pressure

Relief

Valve

Top Lid Detector

Tank Controller

Active Condenser

Water Temperature

Liquid Temperature

Tank Pressure

Liquid Level

Power

Shelf

Tank Pressure

Top Lid Detector

Tank Management

Tank Cooling Control **Power Management Node Management** Interfaces

Open. Together.

Tank Controller

Tank Management Board

Goal: **Compatible with OCP Profiles** Friendly to the Existing Data Center

Redfish-based API

Web-based GUI

Tank Management

Touch Panel

Tank Management

Friendly User Interface Wireless Remote Control

✓ Monitoring ✓ Reporting ✓ Warning ✓ Critical ✓ Control

Serviceability

Swipe the touch panel

To open lid automatically

Swipe the touch panel

To Close lid automatically

Ren

Activate Condenser System

Proprietary condenser system

48V Immersion Cooling Solution

- Two Phase Immersion Cooling for **Excellent PUE**
- High Efficiency DC 48V Power Delivery **System**
- Advanced Condenser System for Low Vapor Leakage
- Tool-less Design, Automation, and **Friendly UI with Easy Serviceability**
- Tank Management for Safety
- Leverage Large Scale Deployed and **Field Proven OCP Server Board**

Design and Investigation

Tank Management Board

Cost Reduction

Optimized Server Board

Lower Emission Rate

Serviceability

Tank Specification

Compute density Solution density Solution footprint ASHRAE density (W3) Density per fluorocarbon volume

Static load (Bare solution) Static load (Full solution) Static load (IT solution, Max) Height clearance

Non-IT power/kW Non-IT power overhead Thermal loss to air Temperature delta (Min/max) Highest cooling temp

> IT chassis type Max chassis size Chassis capacity IT brand compatibility

Сс

Density		
	42 kW/m², 35°C	
	42 kW/m², 35°C	
	21 kW/m², 35°C	
	24 kW/m², 32°C	
	120 kW/m ³	
onstruction		
	5,9 kN/m ²	
	11,8 kN/m ²	
	14.8 kN/m ²	
	2530 mm	
Efficiency		
	0 W	_
	70W	
	TBU	
	TBU	
	60°C	
IT		
	Immersion-optimized	
	7.7"	
	0.75 U	
	OCP/Wiwynn	
MUMMININ INT		
	Open. Togeth	er.

Open. Together.

OCP Global Summit | March 14–15, 2019

