OPEN POSSIBILITIES.

Liquid Cooling: Drivers, timelines and a case for industry convergence on coolant temperatures

Server

Liquid Cooling: Drivers, timelines and a case for industry convergence on coolant temperatures

Chris Malone Datacenter Systems Engineer, Meta OPEN POSSIBILITIES.

OPEN POSSIBILITIES.

TL;DR

- Our industry is on a steady course to break the limits of heavily air-economized cooling, starting with ML Training chips and high-speed switch fabric ASICs. The solution is liquid cooling.
- Our industry (chipmakers, facility builders, operators) will benefit from converged liquid cooling practices, as we've done previously with economized datacenters.
- 30C coolant temperature is compatible with efficient data center design principles.
- We can probably stretch 30C through 2035, with industry investments around packaging, layout, and TIM improvement.
- 30C likely won't last forever. Whatever forum & consensus we establish now can be used to better govern future changes, and rates of change.

Sequence

Meta DC Operating Conditions

ML/Training Module Cooling Trends

Fabric Switch Cooling Trends

Challenge & Proposal

Supporting Material (if time available, or in Q&A)

Meta DC Operating Conditions

Our Datacenter Operating Conditions

Economization has worked very well for Meta for a decade

- Reference boundary conditions for hardware thermal design
 - Supply air temperature: 65°F to 85°F (18.3°C to 29.4°C)
 - Air-side deltaT: 22°F (12.2°C)
 - Altitude: Sea-level to 6000 ft
- Validation and deployment of IT gear
 - Thermal validation of hardware conducted up to 35°C (corner cases), with specific focus on operation at 30°C
 - Power and airflow requirements at 30°C used as reference for deployment (cluster planning)

~30°C is used as the nominal operating / ambient temperature for air-side economization.

(Charts in this deck with projections of air-cooling limits are based upon these conditions).

Chip, System, Rack, and Facility Designers:

If you design for air-side or water-side economized environments, *our projections likely resemble yours*.

The Emergence of Need for Liquid Cooling in ML

- Application Demand trendline is a *composite* of trends in chips / modules.
 - This includes estimated effective utilization of chips.*
- These are *per training module* estimates, not *per system*.
- TDP-only plotlines of specific chips / modules (not shown here) fall both above and below the Application Demand line.
 - AALC Air Assisted Liquid Cooling

OPEN POSSIBILITIES.

* This varies some by architecture, data model, and software application.

The Bridge: Air Assisted Liquid Cooling (AALC)

Transitional solution to enable liquid cooling

AALC: Open Rack v3 IT rack with adjacent ORv3 HX Rack

- IT rack + Cooling Rack Bundle
- Enables liquid cooling in free air-cooled data centers
- More info can be found at: <u>https://www.youtube.com/watch?v=S3hNlZGj4UM</u>

The Limits of AALC as a Bridge

Likely good for 1 - 2 generations depending upon other optimizations (more on this, later)

- AALC Air Assisted Liquid Cooling
- FWC Facility Water Cooling

OPEN POSSIBILITIES.

ASHRAE Describes Similar Challenges

A broad range of coolant temperatures, for a broad range of chip power levels and facility designs

Class	Typical Infrastructure Design		Facility Water
	Primary Facilities	Secondary Facilities	Supply Temperature °C
W17	Chiller/Cooling Tower	Water-side economizer	17
W27			27
W32	Cooling Tower	Chiller / District heating system	32
W40			40
W45	Cooling Tower	District heating system	45
W+			> 45

This range of products, conditions, and coolant temperatures make it very difficult to optimize.

This affects performance, scale, and predictability.

A Durable Thermal Interface Approach is Needed

What strikes the best balance of durability and efficiency, for new facilities and systems?

Building a new facility with a goal to support emerging IT equipment for a decade, efficiently?

Which class should you choose?

An Air & Liquid System Designed for 30C

Air cooling only: 30°C is optimal

An Air & Liquid System Designed for 30C

Air + Liquid Cooling: optimal in multiple aspects

OPEN POSSIBILITIES.

- At 30°C:
- Efficiency PUE & WUE are manageable
- Simplicity Same primary loop supply for air & liquid
- Durability 30°C will be sufficient for many generations

ML/Training Module Cooling Trends

Assumptions We Make About Training Systems

Analysis based on UBB style 8x modules training system layout

Boundary:

- 8x OAMs per system
- PG25% based coolant
- AALC \rightarrow coolant supply above 30°C (more on this, later)
- FWC \rightarrow coolant supply at 30°C (more on this, later)

Package assumptions:

- Average ASIC die temp limit at 80 °C
- Improved HBM stack resistance

Many Points to Optimize in a Thermal Stack

Some optimizations addressable by HW system designers.

Chipmakers and Packagers Can Make a Big Difference

Improvements here benefit whole industry, enhance potential of all coolant set points & thermal solutions

CF

ML Power Trend vs. Cooling Limits

Both AALC and FWC can be stretched with optimizations in the thermal stack

OPEN POSSIBILITIES.

* This varies some by architecture, data model, and software application.

- AALC serves as transitional solution in aircooled facilities
- 30 °C facility water can support future ML demand over 5~10 years, and sustainable if package/cooling technology further advance.

- AALC Air Assisted Liquid Cooling
- FWC Facility Water Cooling

Fabric Switch Cooling Trends

This is not just an ML Problem

Impact of stretching air cooling for NW chips

2021 - 2.8 kg

OPEN POSSIBILITIES.

2025-3.7 kg

NOVEMBER 9-10, 2021

Challenge & Proposal

Challenge: Lack of community alignment

Current situation with facility water supply temperature

- Range is too wide. Difficult to optimize.
- No concrete boundary conditions to plan / constrain range of optimization. Applies to facility, system, chip thermal sol'n.
- Mature, efficient (PUE and WUE) cooling paradigms for ~30C air. Practical
- Same paradigms durable with facility water at ~30C ranges.

Narrow the range. Benefit from common investment in...

- Infrastructure Design
- Chip design, packaging, thermal solution
- Component/Platform Solution
- Material/Coolant Standards and Supply
- Streamlined design/validation/manufacturing & quality standards

OPEN POSSIBILITI<mark>ES</mark>.

Typical Infrastructure Design **Facility Water** Class Supply Primary Secondary Temperature °C Facilities Facilities Specialized W17 17 Chiller/Cooling Water-side Tower economizer W27 27 32 W32 Chiller / District Cooling Tower heating system W40 40 Not Durable W45 45 **District heating** Cooling Tower system W+ > 45

ASHRAE Environmental Specification for Liquid Cooling:

https://www.ashrae.org/file%20library/technical%20resources/bookstore/supplemental %20files/referencecard_2021thermalguidelines.pdf

Proposal

Better harmonize efforts across OCP to narrow down the boundary

- What supply temperature?
 - 30C liquid & air systems maintains PUE & WUE efficiencies + a durable entry point for liquid cooling
- What HW cooling technology to expect, for chipmakers and IT equipment designers?
 - 30C coolant temps can buy time for further optimization of TIMs, packaging, layout
 - Optimizations at the chip level can, in turn, extend the life of 30C-based facilities
 - Likely stretches air-cooled system viability for more mainstream applications

Lay a foundation to address key areas and gaps.

- How should the chip/platform evolve to maintain continuous perf growth along with efficiency and sustainability improvements?
- How can we reduce the ambiguities/uncertainties for every community member?

Call to Action

- Let's converge as an industry on a facility water temperature. How about 30C?
 - If not 30C, bring your data and your rationale. You might have a better approach.
- If we can agree on 30C, let's invest in an ecosystem (from chip to data center) that leverages our infrastructure investment for as long as possible without sacrificing efficiency or performance.
- Let's form an industry community to amplify this approach
 - Large scale operators, chip suppliers, and facility builders should converge and partner with other industry standards groups (e.g., ASHRAE) for broader influence.

Call to Action

Want to get involved?

- How to get involved Meta POCs
 - OAI Group Lead [Meta] Whitney Zhao, whitneyzhao@fb.com,
 - OAI Cooling Lead [Meta] Cheng Chen, chen@fb.com
 - Meta Thermal Lead John Fernandes, jfern@fb.com
- OAl Group:
 - Where to find additional information: https://www.opencompute.org/wiki/Server/OAI
 - Mailing list: <u>https://ocp-all.groups.io/g/OCP-OAI</u>
- OCP Rack & Power <u>https://www.opencompute.org/projects/rack-and-power</u>
- OCP Advanced Cooling Solution <u>https://www.opencompute.org/wiki/Rack %26_Power/Advanced_Cooling_Solutions</u>

Supporting Material

Fabric Switch Cooling Trends

This is not just an ML Problem

Can Stretch Air Further with Single Chips, Big Heatsinks

2021 - 2.8 kg

OPEN POSSIBILITIES.

2025-3.7 kg

NOVEMBER 9-10, 2021

Fabric Switch ASICs. Power Efficient vs. Modular.

The most *power efficient* switch ASICs break free-air-economized limits faster.

- **Pluggable optics** (less power efficient)
 - Separate cooling solutions for optics and switch ASIC
 - Air-cooling of pluggable optics still the preferred approach
- Near/co-packaged optics (more power efficient)
 - Combined cooling solution for ASIC and optics assembly

OPEN POSSIBILITIES.

Hypothetical top side of near-packaged optics assembly

Switch ASIC only

Power trends and cooling limits

- Heat sink solution (in a 4RU chassis) influenced by weight, airflow, fan power and noise limitations
- Cold plate solution should enable long-term support for future switch ASIC packages, but does not alleviate air-cooling concerns for pluggable optics
- System-level cooling (25% PGW mixture)
 - For Air-assisted liquid cooling, coolant supplied at 40°C
 - For Facility Water cooling, coolant supplied at 30°C
 - Coolant side ΔT = 10°C

Co-packaged optics assembly (Switch ASIC + OMs)

Power trends and cooling limits

Mid-2020's to Mid 2030's

- Heat sink solution limited by cooling capacity (in addition to factors outlined in the last slide)
- Cold plate solutions may cover us to 3900W. Power-efficiency of direct drive may enable support further out than projected by XSR optimized.
- System-level cooling (25% PGW mixture)
 - For Air-assisted liquid cooling, coolant supplied at 40°C
 - For Facility Water cooling, coolant supplied at 30°C
 - Coolant side ΔT = 10°C

Thank you!

