OPEN POSSIBILITIES.

ORV3 Power Shelf Development Update

ORV3 Power Shelf Development Update

Ralf Pieper, R&D Director, Delta Energy Systems Harry Soin, Senior Director, Advanced Energy Lam Vu, Director, Lite-on Technologies

GOLD

Content

Short recap on ORV3 Spec Holdup time during overload Dummy Load-Box Common ORV3 with PMBus Shelf-Controller (PMC)

Efficiency Update PFC and THD Update Rectifier and BBU transition

BBU and Rectifier transition in fault cases Current sharing between power shelves

OPEN POSSIBILITI<mark>ES</mark>.

by Ralf

by Harry

Short refresh on ORV3 Spec

<u>Rectifier:</u>

Input voltage range: 180V-305VAC Output power: 3000W Output voltage: 50V @ AC / 48V @ BBU Output current: 60A Holdup time: 20ms Efficiency: 97,5% pk / 96,5% @ full load Current share: Active + Voltage Droop Communication: I2C / MOD-Bus Size: 73mm x 40mm (1RU) x 520mm

<u>Shelf:</u>

6 Slots for PSU + 1 Slot for PMC Output power: (N+1) = 18000W / 15000W usable Output voltage: 50V @ AC / 48V @ BBU Output current: 300A nominal Output connector: 500A Barklip (BK500) Communication: Ethernet via PMC Size: 21" x 48mm (10U) x 787mm

Holdup time during overload

"Design 2" Requirements:

20ms Holdup @ 100%

equals 60J

13,3ms Holdup @ 150% (9ms + 4ms)

After 10ms Output voltage drops to 48V to wake up Battery Backup Unit.

BBU timing requirement: for detection 1ms 2-3ms for rampup DC/DC → Minimum 4ms

Dummy Load Box

Dummy Load:

8 x 500W TTV Loads (adjustable) Hot Swap Controller MCU controlled Fan Speed (adjustable) Input connector: 100A IT-Gear-Barklip Communication: N/A Size: 21" x 142mm (30U) x 787mm

OPEN POSSIBILITIES.

Rear view:

3OU 142mm

21" (537mm)

187mm

Dummy Load Box

Dummy Load Box

Air flow direction Heatsinks

PMC

This year: Step 2 PMC with openBMC & Redfish implementation

OCP

GLOBAI

NOVEMBER 9-10, 2021

PMC Block diagram

For more information & Prototypes

Advanced Energy

ORV3 3KW Measured Efficiency

* % Load based on 3000W full load; Efficiency measured with fan loss included * Efficiency measured on PSU that can meet 20msec hold-up on all load conditions

AC	Peak Efficiency	Full Load			
277VAC	97.83%	96.94%			
240VAC	97.66%	96.62%			
230VAC	97.60%	96.52%			

iTHD

Load	iTHD@240 VAC	iTHD@277 VAC	Limit		
5%	22.271	35.713	15%		
10%	4.709	9.712	15%		
15%	3.571	4.026	10%		
20%	3.196	3.315	10%		
30%	2.789	2.781	5%		
40%	2.631	2.671	5%		
100%	2.269	2.148	5%		

OPEN POSSIBILITIES.

PF

Load	PF@ 240VAC	PF@ 277VAC	Limit		
5%	0.7843	0.6876			
10%	0.9495	0.9105	0.95		
15%	0.9764	0.9566	0.95		
20%	0.9861	0.9741	0.95		
30%	0.9936	0.9876	0.98		
40%	0.9965	0.9932	0.98		
100%	0.9992	0.9987	0.98		

iTHD and PF improvement is work in progress to meet the specs

ORV3 Rectifier to BBU Transitions Definitions

There are two main conditions for rectifier to adjust from 51V to 48V:

Condition 1: During AC loss conditions

• Output will adjust if 66.6% of bulk energy is depleted

Condition 2: Over power/current conditions:

- Average power more than 3.3kW for 10s
- Average power more than 3.6kW for 100ms
- Repetitive pulse power more than the pulse power envelope specified (up to 150% load)
- Single pulse power more than holdup time at the overload condition (up to 150% load)

ORV3 Rectifier adjusts from 51V to 48V – AC Loss @100% load

ORV3 Rectifier adjusts from 51V to 48V – AC Loss @150% load

MBFR 9-10, 2021

ORV3 Rectifier adjusts from 51V to 48V – Output Over Power (Average Overload)

3.6KW average power overload for 100msec (100% - 140% dynamic load) Recovers back to 51V after 10sec 3.3kW average power overload for 10sec (100% - 120% dynamic load) Recovers back to 51V after 10sec

OPEN POSSIBILITI<mark>ES</mark>.

Advanced Energy ORV3 Rectifier adjusts from 51V to 48V – Output Over Power (Repetitive/Envelope Pulse Overload)

10-110% Step Load (Adjusts to 48V after the step load exceeds specified pulse power envelope; shuts down after persistent overload then recovers

10-110% Step Load (Short step load pulse exceeds specified pulse power envelope, no shutdown after reducing load <5msec, stays at 48V for 10sec before recovering back to 51V)

CH1:Ishare; CH2:Vout; CH3: lout; CH4:AC

OCP

ORV3 Rectifier adjusts from 51V to 48V – Output Over Power (Single pulse overload)

100-110% Step load (load exceeds the hold up time for the overload condition adjusts output to 48V then shuts down after a persistent overload then recovers after 10sec)

100-110% Step load (load exceeds the hold up time for the overload condition adjusts output to 48V and reduce load to maintain output at 48V before recovering back to 51V after 10sec)

CH1:Ishare; CH2:Vout; CH3: Iout; CH4:AC

CH1:Ishare; CH2:Vout; CH3: Iout; CH4:AC

OCP

ORV3 Rectifier to BBU transition – AC Loss

ORV3 Rectifier to BBU Transition – Overload

For more information, please contact: Harry.Soin@aei.com

ORV3 1OU Power Shelf

3-5kW Power Supplies

ORV3 20U Power Shelf

For more Information & Prototypes

Please contact: Harry.Soin@aei.com

ORV3 Rectifier to BBU Transitions in Fault Cases

Transition between PSU to Battery backup is facilitated by PSU lowering its output voltage into the output voltage range of BBU.

Whenever PSU is about to shutdown, it will bring its output voltage down 3V to allow BBU a chance to support load.

Line loss: reduce output by 3V during holdup time. Holdup time varies linearly with load level.

Overload:

Situation: one input phase is lost, 4 remaining PSUs supply 15kW load and go into overload condition

Maintain output until overload accumulation reaches shutdown timings

Output voltage is reduced by 3V and continues for the next 10mS to allow BBU to pick up the load

Overtemperature: drop output voltage 3V for 20mS before shutdown

OPEN POSSIBILITI<mark>ES</mark>.

Power Transition Between ORV3 PSU Power Shelf and BBS Line Loss

Power Shelf drops output 3V to trigger Battery shelf to start providing power

Power shelf and battery shelf share current by droop mode during transition time

ORV3 Rectifier to BBU Transitions in Fault Cases

BBU Charging Power Allocation

BBU has programmable max charging current to apportion power between load and battery charging

BBU SOH Testing with Constant Current Discharge

BBU can discharge at constant current during SOH test for precise measurement of battery health status

DCF

More Power in a Rack: Current Sharing Between Power Shelves

Power shelves can share current via both droop and active share bus method to increase power of a rack. Active current share bus can be access thru front analog RJ45 connector. Accuracy between PSUs in different shelves is better than 2%

Current Sharing with Droop and Active Current Sharing Signal												
	PSU_1 PSU_2		J_2	PSU_3		PSU_4		PSU_5		PSU_6		
	shelf 1	shelf 2	shelf 1	shelf 2	shelf 1	shelf 2	shelf 1	shelf 2	shelf 1	shelf 2	shelf 1	shelf 2
120A	10.41	10.11	10.80	10.61	10.52	10.31	10.27	10.82	10.55	10.66	10.39	10.39
240A	20.42	20.18	20.93	20.80	20.78	20.50	20.20	20.84	20.80	20.33	20.58	20.44
360A	30.38	30.02	30.73	30.66	31.16	30.84	30.15	30.64	30.71	30.16	30.83	30.42
480A	40.50	40.14	40.38	40.39	41.13	40.65	40.03	40.89	40.42	40.19	40.64	40.08
600A	50.69	50.46	50.28	50.28	51.00	50.66	50.39	50.94	49.45	50.00	50.61	50.24
720A	60.45	60.29	59.95	60.23	61.07	60.83	60.37	60.85	59.64	59.66	60.94	60.41

More Power in a Rack: Current Sharing Between Power Shelves

Without active current share signal, two power shelves can share thru droop with more error between two shelves.

Current Sharing with Droop Only												
	PSU_1		PSU	PSU_2 PSU		J_3 PSU_4		J_4	PSU_5		PS	U_6
	shelf 1	shelf 2	shelf 1	shelf 2	shelf 1	shelf 2	shelf 1	shelf 2	shelf 1	shelf 2	shelf 1	shelf 2
120A	9.31	11.56	9.35	12.27	9.79	8.19	8.33	11.73	8.18	11.61	7.87	11.27
240A	18.79	21.47	19.37	21.99	19.79	18.27	18.06	21.59	18.72	21.46	17.61	21.22
360A	28.91	31.53	29.25	31.97	30.36	28.68	27.79	31.72	28.42	31.40	27.96	31.61
480A	38.77	41.39	38.58	41.56	40.20	38.73	37.61	41.89	37.91	41.19	37.58	41.51
600A	48.42	51.46	48.09	51.40	49.79	48.80	47.45	52.30	47.76	51.46	47.22	51.46
720A	58.13	61.24	57.61	61.14	59.87	58.98	57.03	62.52	57.34	61.25	56.54	62.02

Call to Action

- Get in touch with us to receive latest information about the ORV3 power shelves
- Start testing the ORV3 Power Shelves by yourself! Samples / Prototypes are available!
- Give feedback of your findings to help improving the project in future

Thank you!

Open Discussion

Please use one of these membership logos to designate your company's membership level.

Please use this logo if you or your supplier is an OCP Solution Provider.

