OCP TAIWAN DAY
Road to 5G · AI · Edge Computing
OCP TAIWAN DAY
Road to 5G · AI · Edge Computing

AI Edge Computing

Chilung Wang,
Division Director of Data Center Architecture and
Cloud Applications Division,
Information and Communications Laboratories, ITRI
What Is Edge Computing?

- Gartner’s definition is:
 - Edge computing is a part of a distributed computing topology where information processing is located close to the edge, where things and people produce or consume that information.

- Cloud computing and edge computing are complementary, rather than competitive or mutually exclusive.
Edge Computing vs. Cloud Computing

<table>
<thead>
<tr>
<th>Items</th>
<th>Cloud Computing</th>
<th>Edge Computing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time-sensitivity</td>
<td>Low</td>
<td>High (Low latency)</td>
</tr>
<tr>
<td>Responsive</td>
<td>Slow</td>
<td>Quick</td>
</tr>
<tr>
<td>Delay Jitter</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Real-time analysis request</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Distance to data</td>
<td>Multiple hops</td>
<td>Most of them are one hop</td>
</tr>
<tr>
<td>Data-intensive</td>
<td>Deal with huge collected data</td>
<td>Dedicate to specific data</td>
</tr>
<tr>
<td>Network topology</td>
<td>Multiple hops connectivity</td>
<td>Mesh network based</td>
</tr>
<tr>
<td>Security requirement</td>
<td>High</td>
<td>Very High</td>
</tr>
<tr>
<td>Architecture</td>
<td>Centralized</td>
<td>Decentralized (dedicated processing for a single, specific task)</td>
</tr>
</tbody>
</table>
What Does a $12 Camera Entail?

- The camera consumes power.
 - The $12 ZOSI camera takes about 6W. As a rule of thumb, electricity in the US costs about $1 per watt per year, so we get a three-year power cost of about $9.

- The camera needs a network connection.
 - Local cabling or Wi-Fi may just have capital costs, but almost all Internet access technologies cost real money.
 - FTTH (Fiber To The Home) : $0.10 per TB (Terabyte), Cable/DSL: $8-20 per TB, T1: $100 per TB.

- The camera needs storage in the cloud.
 - $12.50/TB-month for standard storage and $2.5/TB-month for glacier storage.

- The camera needs computing in the cloud.
 - YOLO inference on AWS GPUs (Graphics Processing Units) might cost about $0.58 per million frames.

Lessons:
- On-device or edge computing for video frame filtering is a must.
- Privacy concern for video cameras is rising.
Market Opportunities

- **IDC**: The global edge computing market size in 2018 is estimated to be USD **4.36B** in 2018, and will grow to USD **12.1B** in 2022, at a CAGR of **26%**.

- **MarketsandMarkets**
 - The AI in computer vision market is estimated at USD **3.62B** in 2018 and is projected to grow to USD **25.43B** by 2023, at a CAGR of **45.74%** during the forecast period.
 - The surveillance video analytics market size is expected to grow from USD **2.77B** in 2017 to USD **8.55** Billion by 2023, at a CAGR of **21.5%** during the forecast period.
 - Opportunity: **AI + Edge computing**
What is AI Edge Computing?

Key building blocks:

- Network: 5G or high-speed wired/wireless network
- Computing: edge data center
- Target applications: Deep Neural Network-based video processing

Cloud DC: AWS, Azure, GCP
By combining the technologies from four acquired companies, Nervana, Movidius, MobileEye and Altera, Intel creates the OpenVINO development kit.

- OpenVINO integrate open source software such as OpenCV, OpenVX, and OpenCL and support hardware acceleration chips such as CPU, GPU, FPGA, ASIC (IPU, VPU) as well as deep learning frameworks such as Caffe, TensorFlow, Mxnet, and ONNX.

OpenVINO is mainly used for inference. In addition to providing hardware acceleration, it also provides **Model Optimizer** to speed up inference performance by 10 to 100 times.
Google’s Edge TPU (Tensor Processing Unit)

- End-to-end AI infrastructure: Edge TPU complements Cloud TPU and Google Cloud services
- High performance in a small physical and power footprint
- Co-design of AI hardware, software and algorithms
- A broad range of applications: predictive maintenance, anomaly detection, machine vision, robotics, voice recognition, and many more
Amazon’s DeepLens and Kinesis Cloud

Amazon Kinesis Video Streams Concept

DEEPLENS SPECIFICATIONS
- Intel Atom processor
- Gen9 graphics
- Ubuntu OS - 16.04 LTS
- 100 GFLOPS performance
- Dual band Wi-Fi
- 8 GB RAM
- 16 GB Storage (eMMC)
- 32 GB SD card
- 4 MP camera with MJPEG
- H.264 encoding at 1080p resolution
- 2 USB ports
- Micro HDMI
- Audio out
- AWS Greengrass preconfigured
- cDNN Optimized for MXNet

Input
Kinesis Producers create data and send it into Kinesis Video Streams through a stream.

Kinesis Video Streams
Kinesis Video Streams store and index streams of data.

Kinesis Consumers
Some Kinesis Consumers analyze or process streams, and return new streams or other information.

OCP TAIWAN DAY
Road to 5G · AI · Edge Computing
Application 1: Intelligent Video Surveillance

- Intelligent Video Analytic Applications
 - Virtual border control and policing
 - Community/parking space surveillance
 - Building patrol
 - Children/elder monitoring, e.g. fall detection

- Target Receivers
 - 研華科技、國興資訊、凌群、仁寶、大猩猩科技
 - 商湯科技 (sensetime)、盾心科技 (UmboCV)...
 - 新光保全 (SKS)、中興保全 (SECOM)
 - Vivotek (晶睿)、Zoips (零壹科技)、Synology (群晖)
 - 移民署：國境安全管理需求
Application 2 : Smart Hospital

- Unmanned video-based patient monitoring
 - Real time face recognition for patient/personnel tracking, especially with masked faces
 - Video-based dementia patient monitoring and care-giver behavior monitoring
 - Real time pain and emergency detection for ICU patients

- AI-based medical image analysis
 - aetherAI develops a platform to enable users to upload their DICOM (digital imaging and communication in medicine) files and analyze them automatically. The detection accuracy of specific types of cancers is more than 90%.
 - CS-eHealth for intelligent patient monitoring
Application 3: Next-Generation Smart Retail

Benefits:
- Optimize shoppers’ offline shopping/consuming experiences
- Capture offline shopper-merchandise interactions so as to combine them with on-line shopping behaviors
- Unmanned retail store

Capture whatever can be captured in an on-line store in a physical retail store and integrate them across stores
- How many shoppers?
- Each shopper’s trajectory?
- What merchandise is touched?
- Does she like/dislike it?
Application 4: Smart Manufacturing

Defect Verification and Repair planning

Defect Recognition, Location, and Subtractive Repair

Optical Defect, Location and Repair Recipe Database

Laser Repair Machine

KVM RX

10GE Ethernet

KVM TX

Case A

Manual Inspection

AOI Throughput: 300,000 images/day * 4 human inspectors = 1,200,000 images/day
False negative rate: 5%

DNN Inspection

False negative rate: <0.01%, manual inspection load: 5%
Throughput: 1.2 M images/day → 14.4 M images/day

Case B

Manual Inspection

AOI Throughput: 300,000 images/day * 10 human inspectors = 3,000,000 images/day
False negative rate: 12.9%

DNN Inspection

False negative rate: <1%, manual inspection load: 10%
Throughput: 3 M images/day → 8.6 M images/day
AI Edge Computing for Video Analysis

• **Target product:** A highly cost-effective edge computing system that leverages 5G low-latency high-bandwidth communication capabilities and caters specifically to real-time AI-based video analytics ➔ Video DNN inference

• Supported general-purpose CPUs
 – Intel/AMD’s X86 CPU

• Supported accelerators
 – Nvidia’s Tesla P100/V100 and GeForce GTX 1080Ti
 – AMD’s Radeon RX Vega 64 and Radeon Instinct MI25
 – FPGA
 – Taiwan’s own AI processor (from MTK, RealTek and ITRI)

• Target scale: up to **10** X86 servers and **100** GPUs
• Tight integration with the iMEC software stack developed in 5G systems
• Support for multi-tenancy
Build-up of an AI Edge Computing System

- Operating System for Video DNN Model Execution
- Deep Learning Framework
- DNN Model Compiler
- Baseline Operating System

- How Frequently, When, Which DNN computation
- Training Computation to evolve a DNN Model
 - (TensorFlow, Caffe, and PyTorch)
- DNN Model ➔ Executable Code
 - (TVM)
- Linux container (LXC) and orchestration (Docker)
- Nvidia/AMD/Intel GPU, FPGA
- X86/ARM server with multiple PCIe slots and effective cooling
PCle-based Disaggregated Rack Architecture

- PCle as an I/O interconnect and inter-server communication backbone
- Resources within a rack form a global pool that could be dynamically assigned to individual servers
 - GPU, NVMe SSD, SAS SSD, and 100GE NIC
 - Direct access from a server’s CPU to its assigned HW resources
 - Zero protocol SW/FW overhead
 - Software-defined server that is tailored to CPU-intensive, GPU-intensive, memory-intensive, and network-intensive workloads
- High-bandwidth low-latency intra-rack or east-west communications over PCle
- Inter-rack or north-south communication traffic still goes through Ethernet
- Examples: Adlink’s NexTCA and Liqid
Meshed PCIe Network

- **Main motivation:** Support for scalable inter-CPU, inter-GPU and CPU-GPU communication

- 3x3 PEX88098s used to form a mesh-like topology

- 18 end points each with a 16-lane link or 36 end points each with a 8-lane link to the switch

- Gen4-based: 16Gbps per lane
 16 lanes = 256 Gbps
DNN Model Compiler

• **Objective**: Compile a DNN model’s training/inference computation into efficient code that runs on a wide variety of AI acceleration processors

• **Compiler toolchain**: simulator, accelerator driver, DNN-specific library, code generator, and optimizer

• **Consolidation of Multiple DNN Models**: Given M DNN models that operate on a video stream, how to apply feature extraction on each video frame exactly once?
 1. Apply the M models on each video frame a **breadth-first** rather than **depth-first** manner
 – Apply all the models on an input image before it is evicted out of the CPU/GPU cache
 2. Retrain the M models so that they **share the same feature extraction layers**
 – Cross-model optimization by consolidating their feature extraction layers into a common representation
Resource Management for DNN Model Execution

• Target applications of DNN-based video computing
 – Perception subsystem for ADAS and autonomous driving
 – Face recognition for patient/personnel tracking in smart hospital
 – Limb motion and body language recognition for smart retail
 – Automated optical inspection (AOI) for real-time manufacturing process

• Objective: Maximize the resource utilization efficiency of an AI edge computing system customized for scalable real-time video object detection, location, recognition, tracking, and analysis

• Key ideas
 – Selective: There is no need to apply FULL video analysis to EVERY video frame.
 – Incremental: Take advantage of N-1th frame’s result when processing Nth frame
 – DNN model-aware: Exploit a DNN model’s structure for data prefetching and reuse
OS for Video DNN Model Execution

• Building blocks
 – DNN models for video object location, recognition, tracking, and feature analysis
 – Image frames in a video sequence

• Proposed approach
 – **Baseline**: Apply M DNN models to each frame in a video sequence
 – **Optimized**: Apply a subset of the possibly reduced versions of the M DNN models to each frame in a video sequence while achieving the same video analysis accuracy as Baseline

Model 1: 1.1, 1.2, 1.3
Model 2: 2.1, 2.2, 2.3
Model 3: 3.1, 3.2, 3.3
Multi-Tenancy Edge Computing

- Each tenant wants to rent a couple of edge computing servers from a geographically distributed set of edge computing data centers
 - Each tenant gets a physical data center instance (PDCI), which consists of a set of physical servers, a physical network connecting them, and a set of local/remote storage volumes accessible to the servers.

- Why Hardware as a Service (HaaS)?
 - Preferred hypervisor
 - Big data/DNN training/HPC: efficient utilization of HW resources is critical
 - Container-based virtualization is sufficient.

- Comparison among service models:

<table>
<thead>
<tr>
<th>Model</th>
<th>Rental Unit</th>
<th>IT HW Ownership</th>
<th>HW Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>IaaS</td>
<td>Virtual machine</td>
<td>Service provider</td>
<td>Service provider</td>
</tr>
<tr>
<td>HaaS</td>
<td>Physical machine</td>
<td>Service provider</td>
<td>User</td>
</tr>
<tr>
<td>Colocation</td>
<td>Rack space</td>
<td>User</td>
<td>User</td>
</tr>
</tbody>
</table>
HaaS Service Model

▶ An HaaS reservation consists of the following:
 - **A set of servers**, each with its hardware specification and configurations on BIOS, BMC, PCI devices, and OS
 - **A set of storage volumes** that exist in local or shared storage, and are attached to the servers
 - **A set of IP subnets** that connect the servers and how they are connected
 - **A set of public IP addresses** to be bound to some of the servers, and their **firewall/NAT policies**

▶ User could **remotely** configure and install OS and applications on servers in its PDCI, and manage their operations at run time.

▶ **Players:** HaaS operator and HaaS tenant
Building Blocks for ITRI HaaS

- **Bare-metal provisioning (HaaS operator)**
 - Hardware asset discovery, inventory and configuration

- **Service request (HaaS tenant): BAMPI**
 - **Server provisioning**: Server hardware/firmware configuration and verification
 - **Storage provisioning**: local storage vs. shared storage
 - **Network provisioning**:
 - Agentless and scalable multi-tenancy network isolation: One HaaS tenant’s virtual network is isolated from other HaaS tenants
 - Support up to hundreds of thousands of IP subnets across all tenants
 - Switch hardware/firmware configuration and check

- **Run-time administration (HaaS operator and tenant)**
 - **Hardware usage and maintenance tracking**: HaaS provider
 - **System monitoring and administration**: HaaS provider and HaaS tenant
HaaS Operator’s View of BAMPI

Physical Server
Provisioning Service Portal
d for users

User#1
Login

User#1’s
BIOS/BMC Configuration Parameters Sheet

User#1’s
Server List

User#1’s
OS Configuration Parameters Sheet

Disk Image Pool

Chose Disk Image for Provisioning

BAMPI
Server

Aggregate Switch

ToR SW

Server Grp#1

Server Grp#2

Server Grp#N

Physical Server Pool
Effectiveness of Bare Metal Server Provisioning

<table>
<thead>
<tr>
<th></th>
<th>Manually Done</th>
<th>BAMPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialize BMC Network</td>
<td></td>
<td>KDDI experience: About 200 times faster than manual operation</td>
</tr>
<tr>
<td>Find the MAC Address of Server</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upgrade BIOS / BMC / RAID Firmware</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Configure BIOS / BMC / RAID / OS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check BIOS / BMC / RAID / OS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restore OS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check Network Connectivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Configure BMC Network</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete Kitting VMkernel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※ Time of Completion for 80 servers: 288 man-hours

※ Time of Completion for 80 servers: 1.5 man-hours
Summary

► Target products
 ● AI edge computing system
 ● DNN training appliance: TASA (Taiwan AI Systems Alliance)
 ● Application-specific DNN inference models: hospital, retail, manufacturing

► Application solutions
 ● Video-based 3rd-gen airport border control system
 ● ETC based on real-time vehicle license plate recognition engine
 ● Perception subsystem for ADAS and autonomous driving
 ● Scalable automated optical inspection system

► Technical building blocks
 ● Flexible allocation and sharing of GPU/FPGAs
 ● Efficient inter-GPU communication
 ● DNN model-oriented compiler and OS
 ● Multi-tenancy hardware as a service (HaaS)
Thank You!

Questions and Comments?

chilung@itri.org.tw