Open. Together.

OCP SUMMIT
OCP NIC 3.0 Power with Intel® Products

Paul Kappler, Intel Corporation
Thomas Ng, Intel Corporation
Intel Legal Notices and Disclaimers

• Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.

• Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit http://www.intel.com/performance.

• Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. Performance results are based on testing as of 2/2019 and may not reflect all publicly available security updates. See configuration disclosure for details. No product or computer system can be absolutely secure. For more complete information visit http://www.intel.com/benchmarks.

• This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

• No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

• Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are accurate.

• Intel, the Intel logo and others are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.

© 2019 Intel Corporation.
Goal

• OCP NIC 3.0 Specification
• Ethernet Power Challenge
• Power State Machine
• Power Delivery Example
• Power Envelope Flexibility
• Baseboard Power Options
• Intel Product Details
• Call to Action
OCP NIC 3.0 Specification

- OCP Mezz provided a small NIC focused form factor with management interfaces optimized for datacenters.
- OCP NIC 3.0 improves serviceability, power delivery, management, specification clarity, and is ready for broad market servers.
Ethernet Power Challenge

- PCIe CEM allows for about 1 W AUX power mode
- Ethernet optics may require 1.5 W+ per port
- Power consumption can’t be pre-determined on a PCIe CEM
Power State Machine

- No Separate pins for AUX power. Enable pins drive state.
- ID Mode: Determine card capabilities
- AUX: Enable Ethernet link and management
- Main: Full function
Power Delivery Example

Specifications

Network Silicon

AUX/Single Power Domain

Optional Dedicated MAIN Power Domain

Open. Together.
Power Envelope Flexibility

Power delivery envelopes:
SFF: 15, 25, 35, 80 W
LFF: 150 W
Baseboard Power Design Options

- Optionally pre-qualify OCP NIC 3.0 cards prior to use
 - Card is simultaneously powered on with baseboard

- Optionally design in a BMC with AUX power mode support

- Optionally provide hot plug support
Intel® OCP NIC 3.0 Product Family

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>10GbE</td>
<td>1GbE</td>
<td>10/5/25/1GbE</td>
<td>Up to 100GbE</td>
</tr>
<tr>
<td>Connector</td>
<td>SFP+</td>
<td>RJ45 (1000BASE-T)</td>
<td>RJ45 (10G/NBASE-T)</td>
<td>SFP28, QSFP28</td>
</tr>
<tr>
<td>Ethernet Controller</td>
<td>Intel® Ethernet Controller X710</td>
<td>Intel® Ethernet Controller I350</td>
<td>Next-Generation 10GBASE-T Ethernet Controller</td>
<td>Next-Generation Intel® Ethernet Controller</td>
</tr>
<tr>
<td>Port Count Options</td>
<td>Quad-Port, Dual-Port</td>
<td>Quad-Port</td>
<td>Quad-Port, Dual-Port</td>
<td>Quad-Port, Dual-Port</td>
</tr>
<tr>
<td>Power Profile</td>
<td>~4 W + Optics</td>
<td>~ 4 W</td>
<td>TBD</td>
<td>TBD + Optics</td>
</tr>
</tbody>
</table>

Next-Generation 10GBASE-T Ethernet Adapter for OCP NIC 3.0

- **Speed**: 10/5/25/1GbE
- **Connector**: RJ45 (10G/NBASE-T)
- **Ethernet Controller**: Intel® Ethernet Controller I350
- **Port Count Options**: Quad-Port, Dual-Port
- **Power Profile**: TBD

Next-Generation Intel® Ethernet Adapters for OCP NIC 3.0

- **Speed**: Up to 100GbE
- **Connector**: SFP28, QSFP28
- **Ethernet Controller**: Next-Generation Intel® Ethernet Controller
- **Port Count Options**: Quad-Port, Dual-Port
- **Power Profile**: TBD + Optics
Call to Action

Contact Thomas and Paul if you have questions about how we implement our cards and alignment to the specification.

Where to buy: https://intel.com/ethernet
OCP NIC Project Wiki with latest specification: http://www.opencompute.org/wiki/Server/Mezz
Mailing list: https://ocp-all.groups.io/g/OCP-NIC