OPEN POSSIBILITIES.

Immersion Requirements rev2

CE (Cooling Environments)

Immersion Requirements rev2

Rolf Brink, Asperitas

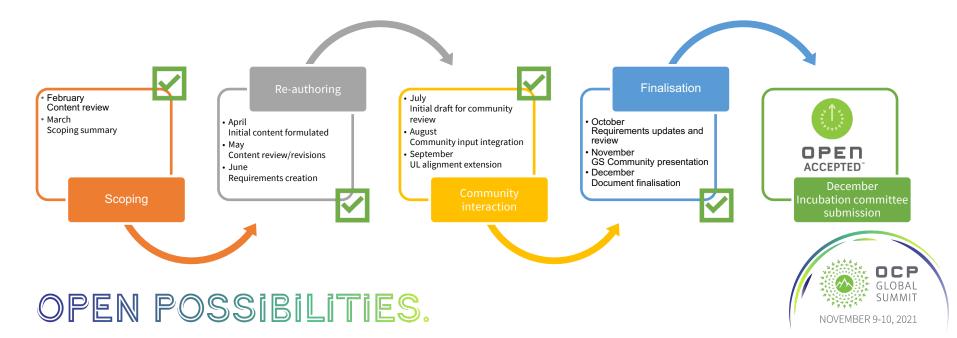
OCP Immersion Project lead

Original publication: May 20, 2019

Authors	Company	Revisions			
Author					
Rolf Brink	Asperitas	Original, Rev 1, Rev 2			
Co-authors					
Jessica Gullbrand	Intel	Rev 1, Rev 2			
John Bean	Schneider Electric	Rev 1			
Nigel Gore	Iceotope	Rev 1			
Rick Payne	Flex	Rev 1			

Rev 2 publication: December 2021

Authors	Company	Revisions			
Author					
Rolf Brink	Asperitas	Original, Rev 1, Rev 2			
Co-authors					
Jessica Gullbrand	Intel	Rev 1, Rev 2			
John Bean	Schneider Electric	Rev 1			
Nigel Gore	Iceotope	Rev 1			
Rick Payne	Flex	Rev 1			
Jimil Shah/ Rick Margerison	TMGcore Inc	Rev 2			
Kevin Wirtz	Cargill	Rev 2			
John Bean	GRC	Rev 2			
Andy Young	Asperitas	Rev 2			
Ashley Hessin/ Nigel Gore	Vertiv	Rev 2			
Eduardo de Azevedo/ Volker Null	Shell	Rev 2			
Eleanor Jones/ Sayan Sengupta	M&I Materials	Rev 2			
Peter Cooper/ Raul Alvarez/David Montes	Submer	Rev 2			



Full year of community work

- 2 plenary meetings per month
- 7 break-out non-plenary focus groups with subject matter experts

Purpose of Immersion Requirements

- Establish common terminology
- Facilitate immersion specific measures and with parameters of importance
- Compliancy requirements for specifications and immersion solutions
- Ensure quality solutions in the OCP domain
- Ensure accurate and factual technology positioning
- Weed-out marketing vs engineering (OCP is engineering focused)

COOLING

When is qualification necessary?

- OCP immersion spec submission
- OCP Logo accreditation for immersion solutions (accepted/inspired)
- OCP solution branding
- OCP Marketplace positioning
- OCP Solution building

Qualification process

Check out *immersion wiki* for detailed process

Submit request for qualification:

- Rolf.Brink@ocproject.net
- John.Bean@ocproject.net
 Complete Immersion Requirements Checklist
- Provided by PL's
- Sample here

Present your qualification to the community (Public)

- Why and how a solution qualifies against Immersion Requirements **Verify** your qualification during an interactive peer review (Non-Public)
- One-off panel of volunteer experts, selected by PL's (authors, reviewers, active community members)
- Overseen by Immersion PL's

Approve, Decline or provisionally with follow-up items

CH 1: Requirements

Requirements format: SR 1.1-1 :

- {SR/OR/CR}: Requirement type
- {#.#}: Paragraph number which contains the requirement
- {-#}: Requirement number

Requirement types

- **SR:** Specification Requirements shall be met by the immersion solution vendor.
- **OR:** Optional Requirements may be met to enable recognition of special functionality of features.
- **CR:** Customer Requirements shall be met by owners, operators, or end users of the solution. Sufficient effort shall be made and demonstrated by the solution vendor to accommodate compliancy.

CH2: Technology definitions

Explanatory text on technology types and terminology

- TCS or Technology Cooling System
- FWS or Facility Water System
- Single vs Two-phase
- Enclosed Chassis
- Open Bath
- Hybrid

CH3: Quality and Safety requirements

Regulatory compliance

- UL, FCC, CE, etc
- SR 3.1-1 to 3.1-2

Mechanical safety

- Emergency procedures, usability by skilled IT personnel
- Electrical safety (Horizontal busbars, electrical assemblies, grounding)
- Fluid/fumes/gas containment
- SR 3.2-1 to SR 3.2-11

CH3: Quality and Safety requirements

Facility side liquid management

- Ventilation, prevention of sewage discharge, disposal, containment, spill management, HSE practices and documentation, training
- CR 3.3-1 to 3.3-9
- Solution side liquid management
- Pressure release, volatile liquids compliancy, evaporative losses containment
- SR 3.3-1 to 3.3-3

OPEN POSSIBILITIES.

ADVANCED COOLING

CH4: Immersion Fluids

- Extended and more meaningful fluid specification requirements
- SR 4.1-1

MSDS/TDS documentation

Reporting requirement only

Specification	Test method(s)	Format			LING TIONS
Dielectric strength, 1 mm (May be estimated based on 2,5 mm)	ASTM D 1816 (IEC 60156)	kV/mm (kV, est. kV/mm)	Kinematic viscosity curve (or list following)	ASTM D7042	Graph
· · ·			0°C		mm2/s (cSt)
permittivity) poin	There is no prescribed method at this point. IEC 60247 may or may not provide a basis for this testing procedure	#,## @# GHz and #°C	20°C		mm2/s (cSt)
Measured at: 5 VAC	*The high temperature test can be		40°C		mm2/s (<u>cSt</u>)
20 GHz and 40 GHz lowered in line with evaporation 20°C and 70°C temperatures of 2-phase fluids			60°C		mm2/s (cSt)
Loss tangent	angent Data must be associated with tests #,#### NSF Nonfood Compounds certification @# GHz and #*C		NSF certificate	Yes/No	
	with the referenced properties		Acidity	IEC 62021-2 / IEC 62021-1	mgKOH/g
Flash point COC	ASTM D 92 / ISO 2592	°C	Hazard statements	GHS Classification ¹	SDS{MSDS spec}
Fire point	ASTM D 92 / 2592	°C	STOT - single exposure	Safety Data Sheet	SDS{MSDS spec}
Auto ignition point	DIN 51794/ ASTM E659	°C	STOT - repeated exposure	Safety Data Sheet	SDS{MSDS spec}
Pour point	ASTM D 97 / ISO 3016	°C	Global warming potential	IPCC 2007	
Odor	n/a	{TDS spec}	(GWP)		
Color	ASTM D 156 / ISO 2211	{MSDS spec}	Biodegradability	OECD 301	{MSDS spec}
Sulphur content	ISO 14596	ppm	Vapour Pressure at 60°C	ASTM D2879	mbar
Specific heat capacity	ASTM E 1269	kJ/kg*K@40°C	Maximum moisture content for dielectric breakdown	(100% Water saturation point, ASTM D1533-20)	ppm
Thermal conductivity	ASTM D 7896	W/m*K @40°C	Oxidation Stability	IEC 61125	Values per method
Density at any °C	ISO 12185	kg/m3 @ #°C	Ozone Depletion Potential	Reference to ASHRAE Standard	Yes/No
Volumetric expansion	ASTM D 1903	/°C	ozone Depletion Potential	34/CFC11?	TCS/NU

CH4: Fluids minimum requirements

- Essential properties to maintain (warranty recommendation)
- SR 4.2-1

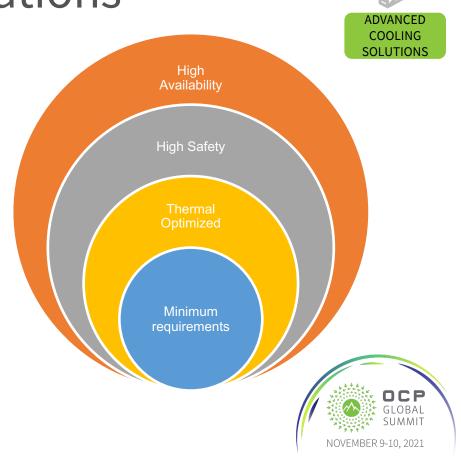
Property	Unused fluid minimum requirements	Lifetime fluid minimum requirements
Dielectric strength	>15 kV	>15 kV
Resistivity	>2 GΩm	<0.2 GΩm
Flash point (COC)	>150 °C	>150 °C
Auto ignition point	>250 °C	>250 °C
Sulphur content	<10 ppm	-
Acidity: hydrocarbons natural esters synthetic esters fluorocarbons?	≤0.01 mg KOH/g ≤0.06 mg KOH/g ≤0.03 mg KOH/g ??	-
Odor (unsealed solutions only)	≤Slight	≤Slight

ADVANCED COOLING SOLUTIONS

CH4: Fluid quality management

Single phase fluids

- Single phase fluids limited to synthetic oils and esters, processed natural esters and fluorochemical fluids.
- Quality management requirements
- SR 4.3-1 to 4.3-4



CH5: Feature classifications

Minimum requirements

Amended with optional classifications

Stacked features enable higher classification

CH5: Feature classifications

Minimum requirements

• Dielectric In/output temperatures, overheat protection, pump status, redfish compliance.

ADVANCED COOLING

Minimum Regs

• SR 5.1-1

Thermal optimized

- Power monitoring, FWS interface thermal monitoring, flowrate monitoring & control, controlled TCS variable pump.
- OR 5.2-1

CH5: Feature classifications

High safety

- compliance with "Thermal Optimized"
- Reporting&logging of all sensors, controls of shut-off valves, pump and electrical input, fault reporting, automated safety responses and fault handling
- OR 5.3-1

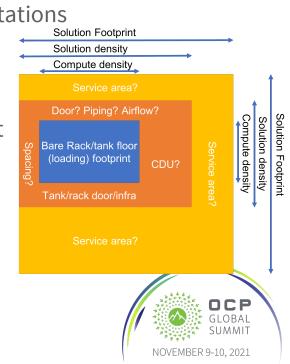
High availability

- Compliance with Thermal Optimized and High Safety
- Concurrent critical component maintainability without IT downtime, Dual power and selectivity, N+1 or 2N cooling capability
- OR 5.4-1

OPEN POSSIBILITI<mark>ES</mark>.

High Availabilit

CH6: General standards


Measurement units

- SI units, mandatory metrics to report, required documentations
- SR 6.1-1 to 6.3-1

Harmonised data definitions:

- Compute density, Solution density and Solution footprint
- Power per volume of liquid
- Static load for bare, full and IT solution
- Height clearance
- Non-IT power data per kW IT and per m2
- Thermal losses
- More...

OPEN POSSIBILITI<mark>ES</mark>.

CH7: Datacenter interface

Input/output differentiation, FWS compatibility

- Colour coding & flow direction indicators, material compatibility of components, pressures and coolant mixtures
- SR 7.1-1 to 7.2-2
- CR 7.2-1

Extensive FWS descriptive information referring water quality, wetted materials, galvanic properties and DCIM.

Immersion related uptime factors

Descriptive content on following topics:

- Ride through (dielectric, partial dielectric and FWS)
- Thermal defsign
- Cooling infrastructure
- Oxidation and moisture
- IT compatibility

ADVANCED COOLING

Reference collections

Requirements catalogue

• Full collection of all requirements grouped by requirement type

Glossary

• Used terms and explanation of meaning

References

• Listing of all referenced documents, studies or used sources

Call to Action

- Join and contribute in the immersion community
- Submit your technology for qualification against Immersion Requirements rev2
- Contribute to other immersion related projects

More information:

- About Asperitas and the work we do in OCP: <u>Rolf.Brink@asperitas.com</u>
- About the OCP activities, community work, projects: <u>Rolf.Brink@ocproject.net</u>

Immersion project participation:

- Check out the project Wiki with all essential information: <u>https://www.opencompute.org/wiki/Rack_%26_Power/Advanced_Cooling_Solutions_Immersion_Cooling</u>
- Join the mailing list and receive all community call invitations: <u>http://lists.opencompute.org/mailman/listinfo/opencompute-acsimmersion</u>

Thank you!

