

Kushagra Vaid

General Manager and Distinguished Engineer Microsoft Azure Microsoft Corporation

Hardware innovations for data growth challenges at cloud-scale

Kushagra Vaid General Manager & Distinguished Engineer Microsoft Corporation

Microsoft & OCP

Project Cerberus updates

Cerberus Master/Slave architecture - Specification augmented to extend Root of Trust domain to peripheral components

All *Project Olympus* motherboards now have Cerberus capability enabled for secure bringup

Project Denali updates

Version 1.0 specification approved by Denali JDF members in February 2019 (*15 member companies collaborating over 12 months*)

Specification scope expanded to include storage/media disaggregation beyond the Cloud

- Enterprise Arrays
- Computational Storage
- IoT Applications

Microsoft Denali EDSFF Prototype – Up to 70% savings on non-media SSD costs

Where is the data coming from?

Generated at the Endpoints

Collected and pre-processed at the **Edge** Analyzed, stored, archived at the **Core**

Data propagates from endpoints to core and back

Source: IDC's Data Age 2025 study, sponsored by Seagate

Data opportunities

IDC predicts Global DataSphere will grow from 33 Zettabytes (ZB) in 2018 to 175 ZB by 2025

Source: Data Age 2025, sponsored by Seagate with data from IDC Global DataSphere, Nov 2018

Storage capacity growth projections

Worldwide byte shipments by Storage Media Type

Source: Data Age 2025, sponsored by Seagate with data from IDC Global DataSphere, Nov 2018

- Supply capacity not sufficient to keep up with 6x projected growth in storage demand
- Need new radical solutions for data processing improvements to address this supply/demand gap

Announcing Project Zipline

Project Zipline

Targeted for legacy and modern datasets Covering various usage scenarios from Edge to Cloud

Full solution stack implementation - Algorithms + Software + Hardware

Compression without compromises Always-on data processing enabled by trifecta of high compression ratios + high throughout + low latency

Project Zipline compression gains

Data sets taken from : Application Services Logs, IoT Text Files, System Logs

Open sourcing Project Zipline

Compression algorithm and specifications Interoperability across endpoints (edge to cloud)

Hardware architecture specifications High bandwidth, low latency implementation

Verilog RTL source and test suite Open sourced IP – Industry first for OCP contributions Enabling faster adoption in the silicon ecosystem

Project Zipline – Usage model examples

Ecosystem partners

OPEN COLLABORATION

Open Rack and Project Olympus collaboration with Facebook and Quanta

Open Accelerator Module – collaboration with Facebook and Baidu

OCP **alternative cooling** committee

Learn More

Visit Microsoft booth A6 – hardware, demos

Attend talks and workshop sessions

Get specs and collateral at OCP Github repo

2:05pm: Executive Track

Michael Cornwell

Software-defined Flash Futures Driving Next-Generation Cloud Services

4:10pm: Expo Hall

Badriddine Khessib, Bryan Kelly

The State of Hardware Security: Cerberus Present and Future

