

PUE 0.7, Data Center of the Future?

Michael Beatty Data Center Consultant **Data Center Dimensions**

Data Center Facilities

Today's Convergence

Sustainability

Facebook commitment to reduce greenhouse gas footprint by 75% Microsoft commitment to cut carbon emissions by 10 million metric tons by 2030 **LEED Designs (Leadership in Energy and Environmental Design)**

Internet of Things (IOT)

Edge Data Centers, Remote Data Collection and Processing, 5G Rollout

Technology

Liquid Cooling, Very Low PUE **Advanced Modular Solutions**

Cloud and Colocation Solutions

Public Private Hybrid

Data Center Heat Recovery

Technology Exists for Practical Heat Recovery

LiquidCool (Dielectric Fluid Solutions) Cloud & Heat Technologies (Water Based Solutions)

Liquid Cooling Much More Efficient than Air **Dielectric Fluid Options** Water Options

Technology Tested and Operational at 140°F (60°C) Exiting Temperatures From Server

Older Buildings Typically Use 180°F (82°C) Water for Heating

New Construction Buildings Typically Use 120°F – 140°F (49°C – 60°C) Water for Heating (Condensing Boiler Technology)

DATA CENTER FACILITIES

LiquidCool Server Racks

DATA CENTER FACILITIES

Option 2: Heat Recovery for **Building Heating**

Data Center Heat Recovery

Suggested Heat Recovery Adjusted PUE Calculation

(Total Facility Power – BTU Heat Recovered/3.412) **Total IT Power**

DATA CENTER FACILITIES

Data Center Heat Recovery Simplicity

Hardware Technology

Liquid Cooling Server Technology Already Exists with Multiple Vendors Longer Lasting IT Hardware, No Exposure to Dust and Environment

Mechanical

Very Few Moving Parts – Fluid Pumps and Drycooler Fans, Very Easy for Spare Parts No Compressors, No Chillers, No CRACs, No Airflow Issues

Electrical

Consider UPS Options which function up to 100°F EcoMode UPS Options for 99% UPS efficiency

Water

No Water Usage other than Potential Closed Loops

DATA CENTER FACILITIES

Data Center Heat Recovery

In a survey of 55,000 schools In the USA...

- 1. ...that have a median size of 75,000 ft²,
- 2. ...And an Annual Median Fuel Consumption of 114,000 BTU/ft²,
- 3. ...Where 92% of Fuel Consumption goes to Building Heat and Hot Water (78,660 therms/year), ...Contributing 417 metric tons of CO2 per year per School, 4.
- 5. ...Meaning 55,000 Schools Contribute 22,935,000 Metric tons CO2 Every Year
- 6. ... There are approximately 132,000 public and private schools in the USA
- 7. ...An Estimated 1000-2000 New Schools are Built Each Year
- 8. Microsoft wants to cut 10,000,000 metric tons CO2 by 2030, Heating 1500 Schools with Edge Data Centers could eliminate approximately 6,255,000 metric tons CO2 over 10 Years

Source: Energy Star Data Trends, Energy Use in K-12 Schools, Jan 2015

Power	Building Types	Carbon Emission	Estimated Heating Cost
Capacity		Reduction Estimates	Savings
500 KW	Small School, Small Office Building, Public Building	200-300 metric tons/year (2500 tons over 10 years)	\$50,000/Year \$1 million+ over 20 Years
1000 KW	Mid-Sized School, Museum, Mid-Sized Office Building, Warehouse	400-600 metric tons/year (5,000 tons over 10 years)	\$100,000/Year \$2 million+ over 20 Years
2000 KW	Large Office Building, Building Complex,	900-1200 metric tons/year	\$200,000/Year
	Hospital, Industrial Applications	(10,000 tons over 10 years)	\$4 million+ over 20 Years

OCP

имміт

Data Center Heat Recovery Possibilities

U.S. COMMERCIAL SECTOR PRIMARY ENERGY END USE, 20105

Source: University of Michigan Center For Sustainable Systems

TOTAL ENERGY CONSUMPTION, U.S. COMMERCIAL BUILDINGS, 2012¹¹

Data Center Heat Recovery Win – Win – Win Solutions

Potential Marketplace Clients

Cloud Providers, Colocation Providers Schools K-12, Higher Education, Public Buildings, Office Buildings, Apartment Buildings, Industry Cable/Telecom Providers

Win – Win - Win

Helping Corporate Clients and End Users Achieve Carbon Emissions Reductions Helping the Environment

Free Heating in Exchange for Free Land/Space Use, No Property Taxes

- Shared Generator and Generator Services
- Shared IT Services
- Potential Dedicated Private Cloud Opportunities, Security Benefits for On-Site Customer Location

DATA CENTER FACILITIES

Data Center Heat Recovery – Road Map to Success

Engineering Needs

Capacity Needs Review Ideal Drycooler – 3-way valve – Building Heat Design/Control **Energy Recovery PUE Calculation and Monitoring** Rolling Virtual Workload Analysis/AI to Meet Heating Loads **Redundancy Requirements** Liquid Cooling for Network and Storage

Site Preferences

Security Requirements Identify Ideal Target Markets **Engineer Education** EcoMode Options for 99% UPS efficiency

Service/Maintenance Planning and SLA's

DATA CENTER FACILITIES

How do I get involved?

If you are interested in participating on a sub-committee to share ideas, information, and practical application for Data Center Heat Recovery Projects Email Volunteer Leaders:

<u>Michael.Beatty@datacenterdimensions.com</u> Brevan.Reyher@ocproject.com

<u>Robert.Bunger@ocproject.com</u>

https://www.opencompute.org/projects/data-center-facility

https://ocp-all.groups.io/g/OCP-DCF

DATA CENTER FACILITIES

Open. Together.

OCP Global Summit | March 14–15, 2019

