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Everything Goes Up

• From data volume to information processing algorithms

• Further stress on the hardware execution platform
Digital data created: Billion GB/Day

Global E-mail usage: Billion/Day

iPhone Camera Resolution (MP)

[Micro Focus; A. Gholami, 2020]
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Hardware Cost Analysis

Operation Area(um2)*

8-bit Add 36

16-bit Add 67

32-bit Add 137

16-bit Floating-point Add 1360

32-bit Floating-point Add 4184

8-bit Multiply 282

32-bit Multiply 3495

16-bit Floating-point Multiply 1640

16-bit Floating-point Multiply 7700

32-bit SRAM Read (8Kb) -

32-bit DRAM Read -

*45nm Technology Node
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Note: All the above data is adopted from A. Gholami 2021

[A. Gholami 2021]



In-Memory Computing

• In-memory computing (IMC) provides 
a realistic solution to mitigate the 
von-Neumann bottleneck

• Combines both memory access and 
the computation into a single unit 
through analog domain computation

• Crossbar-based architecture 
provides a good platform for MVM 
computations in DNNs

[A. Shafiee 2016]

[L. Song 2017]



Why not Monolithic IMC?

• IMC accelerators utilize a weight stationary architecture with all weights 
on-chip

• Monolithic IMC chips result in high fabrication cost with increasing area. 
Larger area -> more defects, lesser yield, and higher cost

[AMD, ISSCC 2021]

[G. Krishnan, 2021]



2.5D/Chiplet IMC – An Alternative

• 2.5D or chiplet architecture combine many 
small chips using an interposer to form a 
large system

• Each chiplet with smaller size improves the 
design effort, yield, reduces defect ratio, and 
reduces fabrication cost

• To achieve similar or better performance as 
monolithic architectures, careful design of the 
chiplet architecture and dataflow are 
necessary

Package Interposer NoP

DRAM

Global 

Buffer

Chiplet

Global 

Accumulator

[G. Krishnan, 2021]

We propose SIAM !!



What SIAM can do and How it Helps !

• Platform for architectural exploration for chiplet-based IMC architectures 
(RRAM and SRAM)

• Designers get a wide range of parameters to tune and adjust for different 
architectural choices (e.g. mapping, partition schemes, IMC cell etc.)

SIAM has been open-sourced and is available at the LINK

https://github.com/gkrish19/SIAM-Chiplet-based-Scalable-In-Memory-Acceleration-with-Mesh-for-Deep-Neural-Networks/tree/main


SIAM Performance Benchmarking Tool

• SIAM Block Diagram

• SIAM Architecture

• Benchmarking Engines within SIAM

• Dataflow



SIAM Block Diagram

• In-memory computing (IMC) hardware performance benchmarking tool 
that combines device, circuits, architecture, network-on-chip (NoC), 
network-on-package (NoP), and DRAM evaluation
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Inputs to SIAM



SIAM Architecture

• Array of IMC chiplets, accumulator, buffer, and DRAM connected by an 
NoP fabric

• Supports both RRAM and SRAM-based IMC crossbar architectures
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Dataflow
DNN layer within one chiplet
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Why Heterogeneous Chiplet Architecture

• Inherent non-linear weights and activations distribution in DNNs 

• Adverse impact on the IMC utilization resulting in higher area and energy

• Affects hardware cost of the NoP within the architecture



Big-Little Heterogeneous Architecture

• Bank of big and little chiplets connect by an interposed and bridge-based 
NoP

Substrate

Little Chiplet

Big Chiplet
Interposer

NoP (Interposer)

NoP (Bridge)



Mapping Overview

• Mapping algorithm aims to maximize IMC utilization by utilizing the Big-
Little IMC chiplet -> determine the config of the architecture

• Little bank with smaller IMC are used for the initial/smaller layers while big 
bank is used for the larger/deeper layers -> Map the DNN layers

• NoP designed to exploit the volume of data movement in each of the 
banks -> determine the NoP configurations

• Little bank servicing most of the initial layers has higher data volume 
movement while the big bank has a lower data movement



Experiments and Results



IMC Utilization with Big-Little

• Utilize the mapping algorithm to determine the best configuration for big 
and little chiplets

• 256-64 and 256-32 have similar utilization. But 256-64 provides more 
resources and better energy-efficiency due to reduced peripheral circuits
• Little Chiplet: 25 in number, 25 tiles/Chiplet, and 64x64 IMC size 

• Big Chiplet: 11 in number, 36 tiles per chiplet, and 256x256 IMC size

ResNet-110 ResNet-34 VGG-19 DenseNet-40



Performance Comparison

• Compare performance with a homogenous all little and all big architecture 
for VGG-19 on CIFAR-100

• Proposed big-little architecture achieves reduced area, lower energy, and 
reduced latency



EDAP Comparison

• We compare the energy-delay-area product of the overall big-little 
architecture with all little and all big configurations

• Proposed big-little architecture achieves up to 329x improvement in EDA, 
while consistently outperforming the all big and all little configurations



Support for Unseen Workloads

• We design our architecture to support different workloads by utilizing a 
local DRAM for each chiplet

• For an unseen workload, weights are written into the IMC arrays multiple 
times to complete one inference operation

• Ratio of DRAM energy and compute energy for different chiplet 
configurations

** All weights of VGG-19 fit on-chip 

with this config



Comparison with Other Platforms

• Compared to Nvidia V100 and T4 GPUs, the big-little architecture 
achieves up to 9.6x improvement in area and 99.6x improvement in 
energy efficiency

• Compared to state-of-the-art accelerator from Nvidia (SIMBA), the big-little 
architecture achieves 2.4x area improvement and 18.4x improvement in 
energy efficiency



Key Take Away

• We motivate the need for chiplet architectures for scalable acceleration of 
DNNs

• We introduce a novel benchmarking simulator SIAM that can support a 
wide range of configurations for architectural exploration

• We propose a Big-Little IMC architecture that utilizes a heterogeneous 
compute and interconnect structure for DNN acceleration

• Experimental evaluation of the proposed big-little architecture shows up to 
9.6x improvement in area and 99.6x improvement in energy efficiency over 
state-of-the art GPUs and accelerators (SIMBA)


