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Everything Goes Up

* From data volume to information processing algorithms

 Further stress on the hardware execution platform
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Hardware Cost Analysis
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Operation Area(um?)*
8-bit Add 36
16-bit Add 67
32-bit Add 137
16-bit Floating-point Add 1360
32-bit Floating-point Add 4184
8-bit Multiply 282
32-bit Multiply 3495
16-bit Floating-point Multiply 1640
16-bit Floating-point Multiply 7700

32-bit SRAM Read (8Kb)

32-bit DRAM Read

*45nm Technology Node

Note: All the above data is adopted from A. Gholami 2021




In-Memory Computing
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* In-memory computing (IMC) provides ) ()r)
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« Combines both memory access and
the computation into a single unit =t
through analog domain computation - A

* Crossbhar-based architecture
provides a good platform for MVM e ] ==
computations in DNNs [L. Song 2017]




Why not Monolithic IMC?

« IMC accelerators utilize a weight stationary architecture with all weights
on-chip

« Monolithic IMC chips result in high fabrication cost with increasing area.
Larger area -> more defects, lesser yield, and higher cost

Monolithic IMC Architecture 14000 500
< 1000 =
NE X @ [TCB - 3 s 5.00
= soof (B3| COLED {100 % =
=] & 4.00
: e [ 69 8 g
< 600} 5 /A c =
2 & = 1% 8 % 3.00
g A 11 5 8 2.00
2 200} . i §
0 - _x - 0.1 § 1.00
\,e‘\e ‘&& o N ‘m\“nﬁ @
() S
oY o 45nm 32nm 28nm 20nm 14/16nm 7n




2.5D/Chiplet IMC — An Alternative

« 2.5D or chiplet architecture combine many
small chips using an interposer to form a
large system

Global Global
Accumulator Buffer DRAM

« Each chiplet with smaller size improves the
design effort, yield, reduces defect ratio, and
reduces fabrication cost

Package Interposer NoP Chiplet

* To achieve similar or better performance as
monolithic architectures, careful design of the We propose SIAM !
chiplet architecture and dataflow are
necessary



What SIAM can do and How It Helps !

 Platform for architectural exploration for chiplet-based IMC architectures
(RRAM and SRAM)

- Designers get a wide range of parameters to tune and adjust for different
architectural choices (e.g. mapping, partition schemes, IMC cell etc.)

Simulator Architecture | Circuit ‘ Interconnect ‘ NoP Interconnect | DRAM
GenieX Monolithic | SPICE-based ‘ No ‘ No | No
RxNN | Monolithic | SPICE-based | No | No | No
NeuroSim Monolithic | SPICE-based ‘ P2P (H-Tree) ‘ No | No
MNSIM Monolithic | Behavior model | NoC-mesh | No | No
SIAM Monolithic & Chiplet Behfilzfigilafl:/ﬂ)del NOC';Z?::_?:’;‘”'E&’ (driver iﬁgl;zz::igonnect) Supported

LINK


https://github.com/gkrish19/SIAM-Chiplet-based-Scalable-In-Memory-Acceleration-with-Mesh-for-Deep-Neural-Networks/tree/main

SIAM Performance Benchmarking Tool
- SIAM Block Diagram

* SIAM Architecture

« Benchmarking Engines within SIAM

 Dataflow



SIAM Block Diagram

« In-memory computing (IMC) hardware performance benchmarking tool
that combines device, circuits, architecture, network-on-chip (NoC),
network-on-package (NoP), and DRAM evaluation
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Inputs to SIAM

User Input Description User Input Description
DNN Algorithm Device and Technology

Network Structure | DNN network structure information | Tech Node Technology node for fabrication
Data Precision Weights and activation precision Memory Cell RRAM or SRAM
Sparsity DNN layer-wise sparsity Bits/Cell Number of levels in RRAM

Intra-Chiplet Architecture Inter-Chiplet Architecture
Crossbar Size IMC crossbar array size Chip Mode Monolithic or chiplet-based IMC architecture
Buffer Type SRAM or Register File Chiplet Structure Homogeneous or custom chiplet structure
ADC Resolution Bit-precision of flash ADC Chiplet Size Number of IMC tiles within each chiplet
Read-out Method | Sequential or Parallel Total Chiplet Count Fixed count or DNN specific custom count
NoC Topology Mesh or Tree Global Accumulator Size | Size of global accumulator
NoC Width Number of channels in the NoC NoP Frequency Frequency of the NoP driver and interconnect
Frequency Frequency of operation NoP Channel Width Number of parallel links for TX and RX




SIAM Architecture

 Array of IMC chiplets, accumulator, buffer, and DRAM connected by an
NoP fabric

« Supports both RRAM and SRAM-based IMC crossbar architectures

IMC Crossbar with
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Dataflow

DNN layer within one chiplet
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Why Heterogeneous Chiplet Architecture

 Inherent non-linear weights and activations distribution in DNNSs
« Adverse impact on the IMC utilization resulting in higher area and energy

Affects hardware cost of the NoP within the architecture
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Big-Little Heterogeneous Architecture

« Bank of big and little chiplets connect by an interposed and bridge-based
NoP

Little Chiplet NoP (Interposer)
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Mapping Overview

« Mapping algorithm aims to maximize IMC utilization by utilizing the Big-
Little IMC chiplet -> determine the config of the architecture

« Little bank with smaller IMC are used for the initial/smaller layers while big
bank is used for the larger/deeper layers -> Map the DNN layers

* NoP designed to exploit the volume of data movement in each of the
banks -> determine the NoP configurations

« Little bank servicing most of the initial layers has higher data volume
movement while the big bank has a lower data movement



Experiments and Results



IMC Utilization with Big-Little

 Utilize the mapping algorithm to determine the best configuration for big
and little chiplets

« 256-64 and 256-32 have similar utilization. But 256-64 provides more
resources and better energy-efficiency due to reduced peripheral circuits

 Little Chiplet: 25 in number, 25 tiles/Chiplet, and 64x64 IMC size
* Big Chiplet: 11 in number, 36 tiles per chiplet, and 256x256 IMC size

ResNet-110 ResNet-34 VGG-19 DenseNet-40




Performance Comparison

« Compare performance with a homogenous all little and all big architecture
for VGG-19 on CIFAR-100

* Proposed big-little architecture achieves reduced area, lower energy, and
reduced latency

. | Area ‘ Energy ’ Latency
Configuration
IMC | NoP | NoC | Total | Normalized to | IMC | NoP | NoC | Total | Normalized to | IMC | NoP | NoC | Total | Normalized to
%) | (@) | %) | (mm?) | biglittle (x) | (%) | (%) | %) | (m)) | big-little (x) | (%) | (%) | (%) | (ms) | big-little ()
Little only | 119 | 88.0 | 0.1 | 952.1 | 10.9 | 997 | 02 | 01 | 13 | 4.1 | 997 | 01 | 02 | 16 | 1.3
Big only | 440 | 555 | 05 | 597.2 | 6.8 | 78.6 | 11.0 | 104 | 0.43 | 1.3 [ 99.6 | 01 | 03 | 3.2 | 2.7

Big-Little (this work) | 52.4 | 47.4 | 0.2 | 87.4 | 1.0 | 99.8 | 0.1 | 0.1 | 0.32 | 1.0 1 99.2 | 03 | 05 | 1.2 | 1.0




EDAP Comparison

« We compare the energy-delay-area product of the overall big-little
architecture with all little and all big configurations

* Proposed big-little architecture achieves up to 329x improvement in EDA,
while consistently outperforming the all big and all little configurations
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Support for Unseen Workloads

« We design our architecture to support different workloads by utilizing a
local DRAM for each chiplet

* For an unseen workload, weights are written into the IMC arrays multiple
times to complete one inference operation

« Ratio of DRAM energy and compute energy for different chiplet
configurations

# Chiplets

VGG-16

VGG-19

** All weights of VGG-19 fit on-chip

#partitions

Ratio

#partitions

Ratio with this config

36

2

1.1

1

0.08**

25

2

2.1

2

131

16

3

3.6

2

161




Comparison with Other Platforms

« Compared to Nvidia V100 and T4 GPUs, the big-little architecture
achieves up to 9.6x improvement in area and 99.6x improvement in
energy efficiency

« Compared to state-of-the-art accelerator from Nvidia (SIMBA), the big-little
architecture achieves 2.4x area improvement and 18.4x improvement in
energy efficiency

Platform Area (mm®?) | Energy Efficiency (Images/s/W)
Nvidia V100 GPU* 815 8.3
Nvidia T4 GPU* 525 15.5
SIMBA [23] 215 45
Big-Little (this work) 85 827




Key Take Away

« We motivate the need for chiplet architectures for scalable acceleration of
DNNs

« We introduce a novel benchmarking simulator SIAM that can support a
wide range of configurations for architectural exploration

« We propose a Big-Little IMC architecture that utilizes a heterogeneous
compute and interconnect structure for DNN acceleration

« Experimental evaluation of the proposed big-little architecture shows up to
9.6x Improvement in area and 99.6x improvement in energy efficiency over
state-of-the art GPUs and accelerators (SIMBA)



