Chiplet-based Waferscale Computing

Rakesh Kumar

University of lllinois
Urbana-Champaign

I

(collaboration with UCLA — afternoon talk will cover the design and implementation aspects of this work)
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Gene Amdahl’s Trilogy Systems Tandem Computers, Fujitsu

Other efforts: ITT Corporation, Texas Instruments. Recent efforts: Spinnaker (Neuromorphic Chip)



What Happened to Waferscale Integration?

Didn’t work out (e.g., Trilogy Systems was one of the

‘ biggest financial disasters in Silicon Valley before 2001) {
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Deemed commercially unviable



Time to Give Waferscale Another Go?

» Highly parallel applications are spread across 100000

many processors E 10000 -
""_'-;.

. .. % 1000 -
» Communication between the processors is still @

a big bottleneck e 100 -

Eﬁ 10 -
* Low Bandwidth (a few 100s of GBps) E

1 =

o Wi : : On-Chip Between Between
High energy per bit (10s of pJ/bit) packages  Nodes
on a PCB

e Real estate on chip (15-25% of the chip is
devoted to SERDES I/Os)



Time to Give Waferscale Another Go? (2)
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However, to achieve waferscale integration, we need to solve the yield problem




Re-imagining Waferscale Integration

Q: What do we need from waferscale integration?
A: High density interconnection
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Enabling WSI Technology

Silicon Interconnect Fabric (Si-IF)

Interconnect Wire

Copper plllar——>
Si-IF .—‘

__~ui

Bare Silicon Wafer Interconnect and Copper
Pillar Patterning Measured Bond Yield >99%

Allows waferscale integration with high yield

[HPCA2018]



A Case for Waferscale GPU

GPU applications scale well with compute and memory resources
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Waferscale GPU Overview

3D DRAM

3D DRAM

e GPU die =500 mm?
e 3D DRAM die =100 mm?
« Total Area = 700 mm?

* GPU Die power =200 W
* DRAM Die power=35W
 Total Power =270 W

A GPU Module: GPM

300 mm wafer has enough area for about 72 GPU modules (GPM).

11



Architecting a Waferscale GPU

Q: Can we build a 72-GPM waferscale GPU ?

Three major physical constraints:

1. Thermal
» Woaferscale GPU would dissipate kWs of power

2. Power Delivery
» How to supply kWs of power to the GPU modules?
» Voltage Regulator Module (VRM) overhead?

3. Network of GPMs
» Si-IF has up to 4 metal layers, what network topology to build?
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Thermal Design Power

» Forced air-cooling with two heat sinks

Primary
Heatsink

» ~12 kW TDP i.e., 34 GPMs can be supported
72

Chassis

Si-IF
34

Secondary
Heatsink

Number of Supportable GPMs

Area Constrained Thermally
only Constrained
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Power Delivery
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Stacked Power Delivery
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Waferscale Inter-GPM Network

HE

Mesh 1D-Torus 2D-Torus
Topology Inter-GPM BW (TBps) Si-IF Yield
Mesh 95.9%
2 ___
1-D Torus 1.5 84.3%

3 2D Torus 1.9 74%
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Final WS-GPU Architectures
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Thread Block Scheduling and Data Placement

Dynamic Online [1]:
e Contiguous TBs placed in the same GPM
* First-touch data placement

Static Offline:
e Recursive Partitioning based on Fiduccia-
Matthessey algorithm

* Logical Cluster to Physical GPM mapping =2
Simulated Annealing (SA) based placement

[1] “MCM-GPU: Multi-Chip-Module GPUs for Continued Performance Scalability”, A. Arunkumar et. al., ISCA 2017
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Experimental Methodology

Simulator: In-house Trace-based GPU Simulator (Validated against Gem5-GPU)
Baselines: MCM-GPU, 1so-GPM multi-MCM GPU integrated on PCB

Benchmark Suite Domain
backprop Rodinia | Machine Learning cecce e
hotspot Rodinia | Physics Simulation
lud Rodinia Linear Algebra
particlefilter naive | Rodinia | Medical Imaging MCM Package PCB
srad Rodinia Medical Imaging
color Pannotia Graph Coloring
bc Pannotia Social Media PCB Package WSI

Bandwidth  256GBps 1.5TBps 1.5TBps
Energy 10pJ/b 0.54pJd/b 1pJ/b
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Results — WS-GPU Performance Improvement
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* WSI with 24 GPMs performs 2.97x better than multi-MCM configfjration (EDP: 9.3x)

0

* WSI with 40 GPMs performs 5.2x better than multi-MCM configuration (EDP: 22.5x)

* With dynamic online scheme, WSI’s speedup improves by another ~2x
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Results — Speedup using the Static Scheme

Dynamic-Scheduling-First-Touch
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* Improvement of up to 2.88x (average 1.4x)

e Optimization in scheduling impacts speedup more than data placement
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Summary and Conclusion

* Communication between packaged processors is a major bottleneck
* Si-IF technology enables waferscale integration

» Waferscale GPU versus multi-MCM system:
* 5.2x performance improvement
* 22.5x EDP improvement

* Intelligent scheduling can provide up to 2.88x (average 1.4x)speedup

* Advanced power and thermal architecture has the potential to improve
performance further
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Re-emergence of Waferscale Technologies

Cerebras

Tesla Dojo

Heterogeneous Integration No Yes Yes
Core Count High High High
Memory Capacity Low Low High
Network Bandwidth High High High
Inter-Die Hop Latency Low High Low
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