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What’s the Problem?
NETWORKING

● Optical transceivers are complex and expensive parts of an optical system
○ 100’s or 1000’s of registers/memories
○ Most have SDKs, NDAs, Licensing, etc.
○ Each have different interfaces

● Optical transceiver vendors invest a lot of money to develop their parts
○ Want to maximize their investment, not give it away
○ Would like to operate in as many systems as possible

● System vendors invest a lot of money to develop systems
○ Want to maximize their investment
○ Would like to support as many optical components as possible

● Open optical packet transponder systems have created this opportunity for component and system vendors to work 
with a larger ecosystem



Has this problem already been solved?
Switching ASICs vs. Optical Transceivers

NETWORKING
● Both are very complex chips
● Both have many high speed interfaces
● Both commonly have embedded CPUs and are controlled by external CPUs
● Vendors of both don’t like to expose the details of their implementation

○ NDAs, Specs marked Confidential
● Both have 100s/1000s of registers/memories for status/control
● Both commonly have SDKs
● Optical modules can be modular, switching ASIC are fixed

○ Voyager optics are fixed, Cassini optics are modular
● Since TIP has the same “roots” as OCP, TIP looked to OCP for how to handle this...



SAI - Switch Abstraction Interface
NETWORKING

● A project within the OCP networking group
● Began in 2015

○ Significant adoption since inception
● Designed to be as light-weight as possible

○ Modeled after SDKs
● Uses CRUD operations (create, read, update, delete) over an extensible data model

○ Objects are created/deleted which have attributes that can be read/updated
○ Attributes can be easily extended

● TAI “stole” much of its philosophy from SAI
○ 99% of the time, the answer to “Why does TAI do …?” is “Because that’s the way SAI does it”

● https://github.com/opencomputeproject/SAI 

https://github.com/opencomputeproject/SAI


SAI Becomes TAI
NETWORKING● Transponder Abstraction Interface

● Collection of C header files
● Implementation (C shared library - libtai.so) will be provided by each component vendor
● Users link libtai.so with their application
● Provides a common interface to optical modules
● libtai.so is binary blob, protecting optical vendors
● Current version:

○ https://github.com/Telecominfraproject/OOPT-TAI
● Supported NOS

● Working on propose adding TAI support in SONiC/ONL too



What is TAI?
NETWORKING● TAI is an interface between optical transponders and system software

● Allows system software to operate with any TAI-compliant transponders
● Allows transponders to operate in any system which supports TAI
● By decoupling the transponders from the rest of the system, it allows each to innovate independently
● Available here:

○ https://github.com/Telecominfraproject/oopt-tai
○ https://github.com/Telecominfraproject/oopt-tai-implementations 

https://github.com/Telecominfraproject/oopt-tai
https://github.com/Telecominfraproject/oopt-tai-implementations


What is not TAI?
NETWORKING● TAI is not an API for operators like YANG models

● TAI is not trying to become a de jure standard or standardization body



Differences between Switches and Transponders

NETWORKING● Transponders are commonly modular - switching ASICs are fixed
○ Optical transceivers come and go as a system operates

■ Voyager transceivers are fixed
■ Cassini transceivers are modular

○ Switching ASICs are soldered down
■ There are no known open switch platforms where a switching ASIC can be removed/added in a running system

● There can be several, different optical transceivers in a system
○ Optical transceivers from different vendors can be present in the same system

■ Voyager has only one vendor - Acacia
■ Cassini supports ACO and DCO CFP2 modules from many vendors

○ Switches typically have a single ASIC from one vendor
● Both of these differences are handled in TAI, but not in SAI



TAI Timeline

NETWORKING

2018Q1 2018Q2 2018Q3 2018Q4

NTT:

Initial TAI 

specification

Cumulus:

Significant enhancements to 

the TAI specification

Cumulus:

Voyager’s Acacia AC400 TAI 

implementation is open-sourced

Edgecore:

TAI MUX specification allowing support of different 

vendor’s transponders in the same system

NTT:

TAI MUX code 

open-sourced

Lumentum:

Additional attributes added 

to TAI.

IP Infusion:

taish to allow command line 

access to TAI modules

Facebook:

Hosts first TAI 

workshop



TAI Supporters

NETWORKING



What’s next for TAI?

NETWORKING● More features to exploit rich hardware capability
● More features to ease transponder software development
● Become a good mediator between YANG models (operator’s API) and MSA MIS register maps (hardware API)

○ TAI does not just expose the MSA MIS
● Enlarge the community and accelerate the disaggregation of transponders
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