Gen-Z Technology: Enabling Memory Centric Architecture

Greg Casey, Server Strategist, Gen-Z & Dell/EMC
Launched in October of 2016 to create an open, industry standard for a high speed, low latency, scalable, memory centric fabric

Demos of memory pooling with multiple servers shown over the 2 years

Members have released design IP and silicon vendors have started detailed designs for Gen-Z devices

Released and draft GenZ Documentation is available for public review and comment: www.GenZConsortium.org
Consortium Members

- Aces
- Allion Labs
- AMD
- Amphenol
- Arm
- Avery Design Systems
- Broadcom
- Cadence
- Cisco
- Cray
- Dell EMC
- Everspin
- ETRI
- FIT
- Genesis Connected
- Google
- H3C
- Hitachi
- HP
- HPE
- Huawei
- IBM
- IDT
- IntelliProp
- ITT Madras
- Jess Link
- Keysight
- Lenovo
- Liquids
- Lotes
- Luxshare-ICT
- Marvell
- Mellanox
- Mentor
- Micron
- Microsemi
- Microsoft
- Molex
- NetApp
- Node Haven
- Nokia
- Oak Ridge Natl Labs
- PLDA Group
- Qualcomm
- Red Hat
- Samsung
- Samtec
- Seagate
- Senko Advanced Comp
- Simula Research Lab
- SK hynix
- Smart Modular
- Sony Semi
- Spin Transfer Tech
- Teledyne LeCroy
- TE
- Toshiba Memory Corp
- Univ. New Hampshire
- VMware
- Western Digital
- Xilinx
- Yadro
- Yonsei University
- 3M
Computer-Memory Balance is Degrading

Processor memory and I/O technologies …

Normalized Properties of Typical Server Processors

- 64+ Cores
- >4000 pins
- 8 DDR Channels
- 64+ PCIe Lanes

Memory & I/O Bandwidth Capacity per Core (GB/s)

- Added DDR Channels gave a bump in 2017, but core count growth offsets 8 DDR channels

Computer-Memory Balance is Degrading … are being stretched to their limits

Processor memory and I/O technologies … are being stretched to their limits
Layered Architecture

Core architecture defines operations, protocol, and physical layer abstraction

- 10s-100s GB/s to TB/s per link bandwidth
- Multiple physical layers and signaling rates specified per market
- Leverage existing IEEE 802.3 electrical standards with Gen-Z-specific optimizations
- Supports PCIe electrical, logical, and LTSSM at all signaling rates
Gen-Z Architecture Attributes

- Feature-scalable packetized transport
- Scalable and power-proportional link, physical layers, and underlying memory media access.
- Split memory controller and media controller paradigm
 - Breaks processor-memory interlock—numerous benefits, e.g.,
 - Abstracts media to enable memory controller to transparently support multiple media types and media generations
 - Accelerate solution innovation and industry agility (eliminates “big bang” events)
 - Transparently integrate performance acceleration techniques to reduce load-to-use latency and increase aggregate bandwidth, mitigate NVM latencies, etc.
- Supports processor-centric and memory-centric architectures
 - Processor-centric provides solution evolution path
 - Memory-centric provides enables new solution architectures not possible / practical with processor-centric
Gen-Z Architecture Attributes (continued)

- Supports unmodified OS and unmodified applications
 - MMU memory mapping to directly access Gen-Z-attached memory
 - Supports logical PCI / PCIe devices
- Abstract physical layer interface supporting multiple physical layers and media
 - Easily tailored to market-specific needs.
 - Rapid evolution or replacement without waiting for entire ecosystem to move in lock-step
- Market-driven packaging and fabric topologies
 - Co-packaged and discrete components
 - Single or multi-link point-to-point topologies
 - Switched fabric topologies—component-integrated switch logic or discrete switch components
 - Single enclosure (client, server, storage, network, etc.) to multi-enclosure / rack scale
- Supports legacy connectors and mechanical form factors
- Supports a new, scalable connector and new modular mechanical form factors
- Common protocol enables democratized communications among all component types
Datagram Packets

- Datagram packet model
 - Requesters ensure reliability (if required)
 - Responders simply execute requests and generate responses (if required)

- Datagrams operate over:
 - Point-to-point and switch topologies
 - Multipath options to provide aggregate bandwidth and resiliency

- Optional encapsulation and strong-ordering domain for specialized communications
 - For example, transparently augment communications without changing primary / third-party protocols
 - For example, transparently tunnel third-party protocols without end-component modifications
Gen-Z Allows Memory Innovation

Processor

Media Module

Memory Bus

288pins / DIMM
Synchronous Interface

Processor

Media Module

Memory Bus

Split Memory Controller
Asynchronous Interface
Processor is media agnostic
Gen-Z Connects Disaggregated Components

- **High Performance**
 - High Bandwidth, Low Latency, Scalable
 - Eliminates protocol translation cost / complexity / latency
 - Eliminates software complexity / overhead / latency

- **Reliable**
 - No stranded resources or single-point-of-failures
 - Transparently bypass path and component failure
 - Enables highly-resilient data (e.g., RAID / erasure codes)

- **Secure**
 - Provides strong hardware-enforced isolation and security

- **Flexible**
 - Multiple topologies, component types, etc.
 - Supports multiple use cases using simple to robust designs
 - Thorough yet easily extensible architecture

- **Compatible**
 - Use existing physical layers, no OS modifications required

- **Economic**
 - Lowers CAPEX / OPEX, unlocks / accelerates innovation
Let’s Help the Cores

- 32GB/s (PCIe 3.0) – 64GB/s (PCIe 4.0)
- 200GB/s – 448GB/s
- 25GB/s (DDR4) – 50GB/s (DDR5)
- 1 Gen-Z port = 4 – 8 DDR5 memory channels
- 1 Gen-Z port = 3 – 7 PCIe Gen4 ports
Server Disaggregation

- All resources are collected into shared pools
- High-speed, low-latency fabric connects pools
- Management software:
 - Configures network to connect components
 - Assigns resources
- Result:
 - Disaggregated server
 - True bare-metal bootable server
 - Ready for installation of any OS and application

Pooled Resources

- CPU
- SCM
- Network
- DRAM
- GPU / FPGA
- Storage

Rack Scale Fabrics

Application 1

Application 2
Flexible: Universal Connector System

• Vertical, horizontal, right angle, straddle mount
• Same connectors for memory, I/O, storage, etc.
• Cabled solutions: for copper & optical
• Eliminates “hard choices”
 • Universal connector eliminates industry fragmentation
 • Simplifies supply chain—drives volume and lowers cost
 • Any component, any slot, any time
 • Any mix of static and hot-plug form factors
• Multi-connector option to provide added scalability
 • 80W incremental power
 • Incremental bandwidth
• Supports internal and external cable applications
 • Enables modular system design
 • Enables system disaggregation
 • Eliminates expensive board materials
• Multiple technologies—Gen-Z, PCIe, etc.
• OCP NIC 3.0 Spec uses the 4C+ Connector

Gen-Z members contributed mechanical & electrical specification to SNIA—see SFF-TA-1002
Gen-Z Scalable Connector specification (final version is publicly available) covers remaining functionality.
Scalable Form Factor

- Supports any component type
 - Flash, SCM, DRAM, NIC, GPU, FPGA, DSP, ASIC, etc.
- Supports multiple interconnect technologies—Gen-Z, PCIe, etc.
- Single and double-wide—scale in x-y-z directions
 - Increased media, power, performance, and thermal capacity
 - Double-wide can be inserted into pairwise single slots
- Supports 1C, 2C, and 4C scalable connectors
 - Larger modules can support multiple connectors—scale power & performance
- Scalable Form Factor Benefits:
 - Simplifies supply chain
 - Lower customer CAPEX / OPEX
 - Consistent customer experience
 - Increases solution and business agility @ lower dev cost
 - Eliminates Potential ESD Damage
 - Can safely move modules from failed / old to new enclosure
 - Eliminates SPOF or stranded resources
 - Multiple links per connector, multiple connectors per module
 - Scalable thermal plus improved airflow across components

1 Draft specification publicly available—see www.genzconsortium.org
* Bandwidth calculated using 32 GT/s Signaling
** DRAM module provides 3.5x the highest-capacity DDR5 DIMM
2018 Deliverables

- Gen-Z Core Spec 1.0 was released in February 2018
- The Gen-Z Phy 1.0 spec release and includes
 - 25G NRZ fabric & local requirements
 - PCIe G4/G5
- Gen-Z Scalable Connector 1.1 spec release and adds
 - Internal cables, 48V power delivery, new 4C-HP version
- SFF 8639, SFF 8639 Compact, and SFF8201 1.0 contain form factor requirements based on industry specs with exceptions for Gen-Z
- ZSFF 1.0 contains requirements for form factors unique to Gen-Z
- PECFF 1.0 contains a Gen-Z form factor that has a CEM compatible outline
- Working on deliverables for Management/SW, Test/Compatibility & Design Guides
Call to Action

- Now is the time to engage with Gen-Z. Do it now while there is the opportunity to influence first products.
- Gen-Z embraces OPEN.
 - We shared the Gen-Z connector with the industry SFF-TA1002
 - We embraced EDSFF recommended form factors
 - All of our released specs are publicly available
- Gen-Z allows companies to focus on innovation in their area(s) of expertise and provides the interconnect for these innovative products
- Gen-Z is pleased to welcome CXL (Compute Express Link) to the industry and sees opportunity for solutions that bridge between these two interconnects.
 See computeexpresslink.org for more information
- How can OCP and Gen-Z collaborate? The Gen-Z and OCP organizations must work together to continue driving common elements into designs that benefit our members and the industry.

www.GenZConsortium.org

linkedin.com/company/gen-z-consortium/

Twitter.com/GenZConsortium

Gen-Z Consortium Channel
Open. Together.

OCP Global Summit | March 14–15, 2019