

Chiplets for HPC

John Shalf Department Head for Computer Science Lawrence Berkeley National Laboratory

Moore's Law is Ending (really it is!)

Hennessy / Patterson

Multiple chips in Minicomputers

Performance (vs. VAX-11/780)

Single microprocessors

Multicore microprocessors

Projected Performance Development

January 24 - 26, 2023 DoubleTree by Hilton San Jose ChipletSummit.com Erich Strohmaier Top500.org

Projected Performance Development

Specialization:

Natures way of Extracting More Performance in Resource Limited Environment

Powerful General Purpose

Many Lighter Weight (post-Dennard scarcity)

Many Different Specialized (Post-Moore Scarcity)

Xeon, Power

January 24 - 26, 2023 DoubleTree by Hilton San Jose ChipletSummit.com

KNL, AMD, Cavium/Marvell, GPU

Apple, Google, Amazon

The Future Direction for Post-Exascale Computing

But what are the right specializations to include?

What is the cost model (we know we cannot afford to spin our own chips from scratch)

The ARM licensable IP ecosystem : IP is the commodity (not the chip)

What is the right partnership/economic model for the future of HPC?

BERKELEY LA

January 24 - 26, 2023 DoubleTree by Hilton San Jose ChipletSummit.com

Neil Thompson: Economics of Post-Moore Electronics

http://neil-t.com, MIT CSAIL, MIT Sloan School

Attack of the Killer Micros 90's

HPC is built with of pyramid investment model

Attack of the killer micros John Markoff, May 6, 1991

January 24 - 26, 2023 DoubleTree by Hilton San Jose ChipletSummit.com

It is not good enough anymore to understand the Technology Now we must also understand the market context

Why? Domain specific Architectures driven by hyperscalers

in response to slowing of Moore's Law (switch to systems focus for future scaling)

January 24 - 26, 2023 DoubleTree by Hilton San Jose

ChipletSummit.com

CHIPLET

Opportunity for HPC: New Economic Model

Open Chiplets Marketplace is forming (ODSA and UClexpress)

- Licensable IP and assembly by 3rd party lowers that barrier
- Leverage the economic model being created by HyperScale

Leverage this baseline and extend to support HPC

- Smaller incremental cost for HPC to "play"
- HPC has become "too small to attack the city"

80:20 Rule: Focus open efforts on what uniquely benefits HPC

- Build up a library of reusable accelerators for HPC.
- Interoperability for sustainability: Interoperate with Arm IP for commercially supported IP where it exists and focus Open on the 20% that doesn't make commercial sense to license

January 24 - 20, 2023 DoubleTree by Hilton San Jose ChipletSummit.com

Opportunities for CoPackaged Optics (photonics)

A primer on Resource Disaggregation

January 24 - 26, 2023 DoubleTree by Hilton San Jose ChipletSummit.com

Diverse Node Configurations for Diverse Workload Resource Requirements

Disaggregated Node/Rack Architecture

Most solutions current disaggregation solutions use Interconnect bandwidth (1 – 10 GB/s) But this is significantly inferior to RAM bandwidth (100 GB/s – 1 TB/s)

Impedance Matching to Packaging Technology

In-package integration

Solder Microbumps & Copper Pillars@~10Gbps

Wide and Slow!

Package substrate

January 24 - 26, 2023 DoubleTree by Hilton San Jose ChipletSummit.com

DWDM Using Silicon Photonics

Ring Resonators @ ~10-25 Gb/sec per chan Many channels to get bandwidth density

Wide and Slow!

Comb Laser Sources

Single laser to efficiently generate 100s of frequencies

Wide and Slow!

Photonic MCM (Co-Packaged Optics)

January 24 - 26, 2023 DoubleTree by Hilton San Jose <u>ChipletSummit.com</u>

Photonic MCM (Co-Packaged Optics)

Conclusions

- Scaling alone is no longer a rational metric for HPC success
 - After the "Exaflop" there will be no "Zettaflop" supercomputer
 - We need a different metric for success (more tied to scientific benefit!)
- Think more seriously about how to use specialization productively for science
 - Requires deep understanding of applied mathematics and the underlying algorithms to be successful (chiplets is a way to get there)
- Reevaluate the economic model for the design/acquisition of HPC systems
 - Chiplets enable us to be aligned again with broader industry trends!

• End

How do chiplets enable domain specialization?

CHIPS modularity targets the enabling of a wide range of custom solutions

What is Hyperscale Datacenter Strategy

Interconnect on-Chip

January 24 - 26, 2023 DoubleTree by Hilton San Jose ChipletSummit.com

ODSA: Open Domain Specific Architecture Creating an Open Chiplet Marketplace for Hyperscale Datacenters

Co-Sponsors of the ODSA Open Chiplets Marketplace

Chiplet Bandwidth Roadmap (5 generations of BW doubling)

Table 5: Physical IO Scaling Roadmap for 2D and Enhanced-2D Architectures that use both solder and hybrid interconnects.

Generation Number →		1	2	3	4	5
Raw Linear Bandwidth Density (GBps/mm)		125	250	500	1000	2000
Package Technology	Minimum Bump Pitch (µm) ¹⁷	55	40	30	20	10
	Linear Escape Density (IO/mm)	500	667	1000	2000	4000
	Areal Escape Density (IO/mm ²)	331	625	1111	2500	10000
Signaling Speed (Gbps)		2	3	4	4	4

5.1.2 Area Interconnects for 3D Architectures (see Figure 1)

Table 6: Physical IO Scaling Roadmap for 3D architectures that use both solder and hybrid interconnects.

Generation Number →		1	2	3	4	5
Raw Areal Bandwidth Density (GBps/mm ²) ¹⁸		125	250	500	1000	2000
Package Technology	Minimum Bump Pitch $(\mu m)^{19}$	40	30	20	15	10
	Areal Escape Density (IO/mm ²)	625	1111	2500	4444	10000
Signaling Speed (Gbps) ²⁰		1.6	1.8	1.6	1.8	1.6

Industry: Heterogeneous Integration Roadmap

HETEROGENEOUS INTEGRATION ROADMAP

2019 Edition

http://eps.ieee.org/hir

HPC and Megadatacenters is 2nd chapter

Note: leading edge design nodes are not ideal For every component (e.g. SERDES)

LECTRON 20

OCIETY[®]

IEEE

Society

Photonics

Die + Heterogeneous

System in Package (SiP)

All future applications will be further transformed through the power of AI, VR, and AR.

Conclusions

- Think more seriously about how to use specialization productively for science
 - Requires deep understanding of applied mathematics and the underlying algorithms to be successful
- Reevaluate the economic model for the design/acquisition of HPC systems
- Scaling alone (e.g. Zettaflops) is no longer a rational metric for HPC success
 - What metrics demonstrate effectiveness for science (which should == success?)
 - How to measure *success* in this new environment??? You can't improve what you can't measure.
- Let Us Model Solutions for the Global Climate Crisis without Contributing to Global Warming!

(Carbon Neutral HPC by 2030! Would not be a bad alternative metric)

January 24 - 26, 2023 DoubleTree by Hilton San Jose ChipletSummit.com

