

Caliptra

An open source, reusable silicon IP block for a Root of Trust for Measurement (RTM) Andrés Lagar-Cavilla (Google) Prabhu Jayanna (AMD)

Bryan Kelly (Microsoft)

What is Caliptra

- An OCP specification for a **silicon Root of Trust** internal block
- Targeting SoCs and ASICs in the hyperscaler/datacenter space
- Goals:
 - implementation consistency, transparency, openness, reusability
- A multi-party collaboration including (today):
 - Google, AMD, Microsoft
- An open source implementation of the specification
- The first Security project specification proposing a technology block
- Work in progress!

Targets

- Datacenter devices use by CSPs, hyperscalers
- Not for phones
- Not a discrete or platform RoT
- Key priority are devices handling plaintext user data
 - SoC, GPU, NIC/IPU/DPU
 - Provide a transparency substrate to root confidential compute
 - For example, could fulfill the HES role in Arm RME spec
- Follow on: devices handling cipher text
 - Storage, [NV] DIMMs, switches

Architectural Role

"Composable Security Architectures" in 2021 OCP summit

What is an RTM?

NIST 800-193, Platform Firmware Resiliency Guidelines

Detection	RTM: RoT for Measurement (a.k.a. RTD)	 Integrated Silicon RoT Well and narrowly defined job Measure, verify and attest In package – best bet against physical attacks on integrity Limited fuses
Protection	RTU: RoT for Update	 Discrete RoT Chip Mitigate DoS at scale RTU: reject random blobs pushed at scale
Recovery	RTRec	 RTRec: automated recovery against buggy updates Ok to be a separate discrete element Physical attacks irrelevant to scalable DoS mitigation Integrated flash for unlimited renewability Enforce versions, owners, rotations

Value of Decoupling

NIST 800-193, Platform Firmware Resiliency Guidelines

Detection	RTM: RoT for Measurement (a.k.a. RTD)	 Integrated Silicon RoT Well and narrowly defined job Measure, verify and attest In package – best bet against physical attacks on integrity Limited fuses Not concerned with update or ownership 	
Protection	RTU: RoT for	Discrete RoT Chip	
Recovery	 Decoupling Update and Recovery DoS mitigations usefully simplifies the SoC RTM No need for persistent flash No need for update, fallback, A/B schemes No need for TPM behaviors, or persistent ownership 		

Our Goals

- RTMs have a well and narrowly defined job
 - Measure, verify and attest
 - No need for update, fallback, A/B recovery, TPM, ownership flows
- Useful simplification leads to easier path for convergence
 - Aligned/converged specification
 - Open Sourcing
 - Transparency
 - Reusability
 - Implementation Consistency
 - These are our goals

Caliptra: Behavioral Elements

Identity	Manufacturer Identity aligned to TCG DICE
Measurement	Code & configuration posture of the device.
Lifecycle	Debug mode (ON/OFF), established at reset.
Ownership	No stateful transfer. Vendor authored firmware only, with stateless Owner Authorization
Attestation	Identity & Measurement reporting using DMTF SPDM v1.2+

Summary of Key Behaviors

Measurement

- Load fw, measure fw, and release fw target from reset
- Configuration
 - Measure relevant security configuration state
 - JTAG enablement, GPIO/straps/fuses
- Attestation
 - Form an attestation and sign it with unforgeable entropy
- Identity
 - Provide and protect unique asset entropy (DICE UDS)
- Identity Service
 - For example provide derived keys from UDS to core

Critical Decisions

- Not interested in differentiation
 - Caliptra is not a landing pad for vendor "value adds"
- Support only manufacturer signed RTM code
 - Code roots back to open source fw development
- Leans on DICE
 - FMC mixed into UDS to generate an Alias keypair
 - Derived Alias key signs attestation
- Stateless ownership enforcement
 - A silicon owner can additionally sign code with their key
 - The public signing key is reported in attestation
 - Until next power-on, owner key enforces runtime upgrades
- SPDM responder
 - GET_CERTIFICATES 1.2 (or 1.3) responder for attestation
- Facilitate SoC integration

High Level Block Structure

High Level Block Structure

Making It SOC Independent

- Caliptra boots first, reads its fw, creates identity
- Copies and measures SOC FMC firmware into SRAM buffer
- Releases SOC ROM from reset to boot
- SOC ROM loads FW using current flows and authentication
- Simplifies integration, preserves existing security flows.
- Attestation is always done through, and rooted to, Caliptra

signed fw

Ownership & Implementation Consistency

Caliptra HW

Not Allowed

Proprietary/OEM-signed

forked fw

Connect. Collaborate. Accelerate.

DICE Identity

- Co-signs Caliptra firmware
- Latched into Caliptra RAM on cold-boot
- Authorizes runtime Caliptra updates

Commitments

- Google silicon target 2024
- AMD silicon target 2026+
- Microsoft silicon since 2024

Work In Progress

- Three parties in CLA
- v0.5 spec by end of May, then publish to community
- Partners welcome
 - Must commit to integrate and contribute!
- RTL in progress
 - fw to follow on
- Committed to open sourcing RTL, FW and Specifications

FAQ (don't panic)

- Not a whole chip! It's an IP block
- Not intending to over-specify how you should build your SoC
 - Not mandating backend IP synthesis methods
 - Not mandating certification criteria
 - Not mandating analog IPs, or counter-measures
 - Not mandating a fuse technology or a process node
 - Not mandating manufacturing operational security processes
- Not a datapath element or general purpose crypto accelerator!

Caliptra: Take Home

- Silicon IP block for integration into SoC
- Hyperscaler/datacenter device targets
- Public specification, open source logic and fw
- RTM: Measurement, attestation, identity
- Goals are implementation consistency, portability, transparency, openness
- Explicitly decoupled other security functions to achieve goals
- Google, AMD, Microsoft
 - Contributors who will integrate are welcome!

Caliptra

Bryan Kelly (Microsoft)

An open source, reusable silicon IP block for a Root of Trust for Measurement (RTM)
Andrés Lagar-Cavilla (Google)
Prabhu Jayanna (AMD)

Thanks! Q&A

