Partial Width, Density Optimized HPM Form (M-DNO) Factor Base Specification

Part of the
Datacenter – Modular Hardware Systems (DC-MHS) Rev 1.0 Family
Version 0.7
April 21st 2022
M-DNO Authors / Contributors:

Dell, Inc: Michael Gregoire, James Utz, Corey Hartman, Sandor Farkas, Shawn Dube, Walt Carver, Owen Kidd

Google LLC: Jim Levins, Siamak Tavallaei

Intel Corporation: Dirk Blevins, Todd Langley, Leslie Fitch, Brian Aspnes, Michael Kasper, Susan Yost, Dan Surratt

Hewlett Packard Enterprise Company: Rachid Kadri, Minh Nguyen, Vincent Nguyen

Meta Platforms, Inc: Todd Westhauser

Microsoft Corporation: Priscilla Lam, Mark Shaw

Note: For questions about this specification please contact Michael Gregoire (michael.gregoire@dell.com) and/or Dirk Blevins (dirk.blevins@intel.com). In addition, DC-MHS feedback may always be provided to the DC-MHS Core Team via the mailing list (dcmhs@opencompute.org).
Table of Contents

1. License .. 6
 1.1. Open Web Foundation (OWF) CLA ... 6
 1.2. Acknowledgements ... 7

2. Version Table .. 8

3. Scope .. 9
 3.1. Items Not In Scope of Specification ... 9
 3.2. Typical OCP Sections Not Applicable .. 9

4. Overview .. 10

5. References ... 11

6. Terminology .. 13

7. Background & Assumptions .. 15
 7.1. Common Industry Platform Features Considered ... 15
 7.2. Architecture Specific Assumptions .. 16

8. HPM Layout Concepts & Definitions .. 17

9. Mechanical ... 20
 9.1. HPM Outlines ... 20
 9.2. Board Datum and Mounting Holes ... 23
 9.3. Board and Assembly Thickness .. 24
 9.5. HPM to Chassis Retention Mounting ... 30
 9.6. Board Handling ... 31
 9.7. Common Peripheral Location Requirements .. 31
 9.8. Platform Interconnect Connector Placement .. 32
 9.9. Near IO Connector Placement .. 33
 9.9.1. Cabled Near IO Connectors ... 33
 9.9.2. Fixed Riser Connectors ... 34
 9.10. Far Side IO Connector Placement ... 36
 9.11. Mounting Hole Requirements for IO Module Retention 36
 9.12. Primary Side Component Height Restriction Zones 37
 9.13. Cabling Enablement Keep Out Zones .. 38

10. Power .. 40
 10.1. HPM Power Zones ... 40
Table of Figures

Figure 1: M-DNO Board Type Layout Overview 18
Figure 2: Near and Far Terminology Example 18
Figure 3: M-DNO Type Interop Goals 19
Figure 4: Type 1 HPM Outline 20
Figure 5: Type 2 HPM Outline 21
Figure 6: Type 3 HPM Outline 22
Figure 7: Type 4 HPM Outline 23
Figure 8: Board and Chassis Stack-up Implications 24
Figure 9: Example of consistent peripheral top surface offset relative to HPM 25
Figure 10: Example of Chassis-to-Board Bracket (Board Pan) 27
Figure 11: Type 1 HPM Secondary Side Zero-Height Keep Out Zones 27
Figure 12: Type 2 HPM Secondary Side Zero-Height Keep Out Zones 28
Figure 13: Type 3 HPM Secondary Side Zero-Height Keep Out Zones 29
Figure 14: Type 4 HPM Secondary Side Zero-Height Keep Out Zones 30
Figure 15: HPM Assembly to Chassis Retention Enablement 30
Figure 16: Example Board Handling Feature 31
Figure 17: Locations of OCP NIC 3.0 and DC-SCM 2.0 32
Figure 18: Platform Interconnect Connector Placement 32
Figure 19: Type 1 USB Location 33
Figure 20: Fixed Riser Location and Numbering 34
Figure 21: PCIe Near IO Connector Locations (Type 1/2/3) (Riser Centerlines) 35
Figure 22: PCIe Near IO Connector Locations (Type 4) (Riser Centerlines) 36
Figure 23: Retention hole location relative installed PCIe card 37
Figure 24: Primary Side Component Height Restriction Zones 38
Figure 25: Example Type 4 Cable KOZ Layout 39
Figure 26: M-DNO Power Zone Overview (Type 2 and 4 Depicted) 40
Figure 27: Bellwether UHC 2x6 + 12S PICPWR Connector 41
Figure 28: M-DNO HPM with multimode interface board 42
Figure 29: Near and Far Power Zone Connector Locations 44
1. License

1.1. Open Web Foundation (OWF) CLA

Contributions to this Specification are made under the terms and conditions set forth in Open Web Foundation Modified Contributor License Agreement (“OWF CLA 1.0”) (“Contribution License”) by:

- Dell, Inc
- Google LLC
- Intel Corporation
- Hewlett Packard Enterprise Company
- Meta Platforms, Inc
- Microsoft Corporation

Usage of this Specification is governed by the terms and conditions set forth in Open Web Foundation Modified Final Specification Agreement (“OWFa 1.0”) (“Specification License”).

You can review the applicable OWFa1.0 Specification License(s) referenced above by the contributors to this Specification on the OCP website at http://www.opencompute.org/participate/legal-documents/. For actual executed copies of either agreement, please contact OCP directly.

Notes:

1) The above license does not apply to the Appendix or Appendices. The information in the Appendix or Appendices is for reference only and non-normative in nature.

NOTWITHSTANDING THE FOREGOING LICENSES, THIS SPECIFICATION IS PROVIDED BY OCP "AS IS" AND OCP EXPRESSLY DISCLAIMS ANY WARRANTIES (EXPRESS, IMPLIED, OR OTHERWISE), INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, OR TITLE, RELATED TO THE SPECIFICATION. NOTICE IS HEREBY GIVEN, THAT OTHER RIGHTS NOT GRANTED AS SET FORTH ABOVE, INCLUDING WITHOUT LIMITATION, RIGHTS OF THIRD PARTIES WHO DID NOT EXECUTE THE ABOVE LICENSES, MAY BE IMPLICATED BY THE IMPLEMENTATION OF OR COMPLIANCE WITH THIS SPECIFICATION. OCP IS NOT RESPONSIBLE FOR IDENTIFYING RIGHTS FOR WHICH A LICENSE MAY BE REQUIRED IN ORDER TO IMPLEMENT THIS SPECIFICATION. THE ENTIRE RISK AS TO IMPLEMENTING OR OTHERWISE USING THE SPECIFICATION IS ASSUMED BY YOU. IN NO EVENT WILL OCP BE LIABLE TO YOU FOR ANY MONETARY DAMAGES WITH RESPECT TO ANY CLAIMS RELATED TO, OR ARISING OUT OF YOUR USE OF THIS SPECIFICATION, INCLUDING BUT NOT LIMITED TO ANY LIABILITY FOR LOST PROFITS OR ANY CONSEQUENTIAL, INCIDENTAL, INDIRECT, SPECIAL OR PUNITIVE DAMAGES
OF ANY CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS SPECIFICATION, WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), OR OTHERWISE, AND EVEN IF OCP HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.2. Acknowledgements

The Contributors of this Specification would like to acknowledge the following companies for their feedback:

List all companies or individuals who may have assisted you with the specification by providing feedback and suggestions but did not provide any IP.
2. Version Table

<table>
<thead>
<tr>
<th>Date</th>
<th>Version #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/21/2022</td>
<td>0.7</td>
<td>Initial Public Release</td>
</tr>
</tbody>
</table>

3. **Scope**

This document defines technical specifications for the Density Optimized Form Factors used in Open Compute Project Data Center Modular Hardware System.

Any supplier seeking OCP recognition for a hardware product based on this spec must be 100% compliant with any and all features or requirements described in this specification.

3.1. **Items Not In Scope of Specification**

- Compute Core (CPU/Memory/Voltage Regulators/SMP routing between CPUs)
- JTAG/Debug connectors for the Compute Core
- CPU, Memory, Heatsink, Liquid and any other thermal solutions
- Reliability requirements and design-in details
- BOM Population requirements
- Cooling System Connections (Fans, etc).

3.2. **Typical OCP Sections Not Applicable**

This is a Base specification, requiring other MHS specifications to fully define a design. The following typical Sections of an OCP specification are not included because they are not applicable to this specification.

- Rack Compatibility (Discussed in Section 7)
- Physical Spec
- Thermal Design

- Rear Side Power, I/O, Expansion
- Onboard Power System
- Environmental Regulations/Requirements
- Prescribed Materials
- Software Support

- System Firmware
- Hardware Management (Leverages OCP DC-SCM V2)
- Security
4. Overview

The objective of this specification is to outline the requirements of a family of partial width, DeNsity Optimized Host Processor Module (HPM) form factors within the OCP Modular hardware system group of specifications (M-DNO for short). This M-DNO specification embodies design considerations for CPU, DIMMs, and other server processor related features commonly used by the industry today but is in no limited to only those functions. For instance, an FPGA array being placed within the Compute Area of the HPM is allowable per this specification. The HPM is designed with standard 19” rack, also known as compliant with EIA - 310-D and larger 21” racks in mind but is not limited to only those solutions. This specification considers both monolithic and multi-node / “blade” based system architectures in its definition.

The goals and successes of this specification are defined by allowing multiple generations of Compute Core (CPU/Memory) designs implemented to the specification to enable reuse of chassis and system level components over multiple generations and HPMs. Implementing to this specification and design methodology should result in reduced design investment, reduced validation investment, broader product portfolios and faster development cycle times due to enhanced reuse and leverage opportunity for each HPM designed.

This specification shall define attributes and design requirements that are common and critical to the use and deployment of Enterprise and Cloud solutions as well as EDGE optimized service provider products. Examples of these attributes are mechanical form factor, placement guidance of common subsystems and placement guidance of HPM Power and Input-Output (IO) connections.
5. References

DC-MHS Family of Specifications

The Data Center – Modular Hardware System (DC-MHS) family of specifications are written to enable interoperability between key elements of datacenter and enterprise infrastructure by providing consistent interfaces and form factors among modular building blocks. At the time of this publication there are the following specification workstreams:

- **M-FLW** (Modular Hardware System Full Width Specification) – Host Processor Module (HPM) form factor specification optimized for using the full width of a Standard EIA-310 Rack mountable server. The specification is not limited to use within the EIA-310 Rack but is used to serve as a template for a common target where the design is expected to be utilized.

- **M-DNO** (Modular Hardware System Partial Width Density Optimized Specification) – Host Processor Module (HPM) specification targeted to partial width (i.e. ½ width or ¾ width) form factors. Such form factors are often depth challenged and found not only in enterprise applications but also in Telecommunications, Cloud and Edge Deployments. While the EIA-310 Rack implementation is chosen as a key test case for use, the specification is not limited to use within the EIA-310 Rack but is used to serve as a template for a common target where the design is expected to be utilized.

- **M-CRPS** (Modular Hardware System Common Redundant Power Supply Specification) – Specifies the power supply solutions and signaling expected to be utilized by DC-MHS compatible systems.

- **M-PIC** (Modular Hardware System Platform Infrastructure Connectivity Specification) – Specifies common elements needed to interface a Host Processor Module (HPM) to the platform/chassis infrastructure elements/subsystems. Examples include power management, control panel and cooling amongst others.

- **M-XIO** (Modular Hardware System Extensible I/O) – Specifies the highspeed connector hardware strategy. An M-XIO source connector enables entry and exit points between sources such as Motherboards, Host Processor Modules & RAID Controllers with peripheral subsystems such as PCIe risers, backplanes, etc. M-XIO includes the connector, high speed and management signal interface details and supported pinouts.

- **M-PESTI** (Modular Hardware System Peripheral Sideband Tunneling Interface) – Specifies a standard method for discovery of subsystems, self-describing attributes, and status (e.g., versus a priori knowledge/hard coding firmware and BIOS for fixed/limited configurations). Examples: vendor/module class, physical connectivity descriptions, add-in card presence, precise source to destination cable coupling determination.

To access additional DC-MHS specifications please visit the [OCP Server Project Wiki](https://bit.ly/35i6Liq)

Additional References

This specification also relies on the following Open Compute Project specifications
- **OCP Server Network Interface Card (NIC) 3.0** – Specifies NIC card form factors targeting a broad ecosystem of NIC solutions and system use cases.
 [Mezz (NIC) » Open Compute Project](#)

- **OCP Datacenter Secure Control Module (DC-SCM) 2.0** – Specifies an SCM designed to interface to an HPM to enable a common management and security infrastructure across platforms within a data center.
 [Hardware Management/Hardware Management Module - OpenCompute](#)
6. Terminology

<table>
<thead>
<tr>
<th>Standardized Term</th>
<th>Meaning</th>
<th>Alternative Terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shall</td>
<td>Indicates a requirement for spec compliance</td>
<td>Must</td>
</tr>
<tr>
<td>DC-SCM</td>
<td>Datacenter Secure Control Module v2 as defined by OCP DC-SCM 2.0 spec</td>
<td>SCM</td>
</tr>
<tr>
<td>PCB</td>
<td>Printed Circuit Board</td>
<td>PCBA</td>
</tr>
<tr>
<td>HPM (Host Processor Module)</td>
<td>PCB or PCBA form-factor being defined by this spec</td>
<td>Motherboard, board</td>
</tr>
<tr>
<td>Chassis-Board Bracket</td>
<td>Bracket that attaches to an HPM assembly, that enables a variety of board outlines and hole locations to change over time, and still fit within same chassis base.</td>
<td>Board Pan</td>
</tr>
<tr>
<td>Near</td>
<td>Board location or zone, related to section of board closer to the datum</td>
<td></td>
</tr>
<tr>
<td>Far</td>
<td>Board location or zone, opposite of location of datum</td>
<td></td>
</tr>
<tr>
<td>Platform</td>
<td>Complete system including HPM, power, peripherals, etc</td>
<td></td>
</tr>
<tr>
<td>Compute Core</td>
<td>Elements of board design that are critical to processor and memory support, inclusive of CPU and Memory sockets. Examples are Voltage Regulators, High Speed IO routing, High speed trace routing between multiple processors, high speed trace routing between processors and memory, etc.</td>
<td></td>
</tr>
<tr>
<td>IO</td>
<td>Input Output, commonly referring to high speed connections to a CPU socket.</td>
<td></td>
</tr>
<tr>
<td>PCIe</td>
<td>Peripheral Component Interconnect Express</td>
<td></td>
</tr>
<tr>
<td>CXL</td>
<td>Compute Express Link</td>
<td></td>
</tr>
<tr>
<td>HSIO</td>
<td>High Speed IO, commonly referring to PCIe routing, PCIe connectors, CXL routing/connectors, etc.</td>
<td></td>
</tr>
<tr>
<td>OCP</td>
<td>Open Compute Project</td>
<td></td>
</tr>
<tr>
<td>OEM</td>
<td>Original Equipment Manufacturer</td>
<td>Enterprise</td>
</tr>
<tr>
<td>CSP</td>
<td>Cloud Service Provider</td>
<td></td>
</tr>
<tr>
<td>½ Width HPM</td>
<td>210mm wide HPM, enables systems with 2 HPMs side by side in 19” Rack</td>
<td></td>
</tr>
<tr>
<td>¾ Width HPM</td>
<td>295mm wide HPM, enables systems with HPM adjacent to 2xM-CRPS PSUs</td>
<td></td>
</tr>
<tr>
<td>Platform Custom Zone</td>
<td>Area of system board where space is allotted for Platform designers to implement custom features.</td>
<td></td>
</tr>
<tr>
<td>Specification</td>
<td>Description</td>
<td>Notes</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>Platform Infrastructure Connectivity Specification</td>
<td>Refer to Section 5 (References)</td>
<td>M-PIC</td>
</tr>
<tr>
<td>Full Width Specification</td>
<td>Refer to Section 5 (References)</td>
<td>M-FLW</td>
</tr>
<tr>
<td>Common Redundant Power Supply Specification</td>
<td>Refer to Section 5 (References)</td>
<td>M-CRPS, CRPS PSU</td>
</tr>
<tr>
<td>Extensible I/O Specification</td>
<td>Refer to Section 5 (References)</td>
<td>M-XIO</td>
</tr>
<tr>
<td>KOZ</td>
<td>Keep Out Zone, a design term for PCB designs that defines area of a board design where no components may be placed, usually to enable mechanical attachments or mechanical features.</td>
<td></td>
</tr>
<tr>
<td>KIZ</td>
<td>Keep In Zone, a design term for PCB designs that define a zone with a height restriction (such as a volume), which the components selected for that part of the board design must comply with the height restriction of that zone.</td>
<td></td>
</tr>
</tbody>
</table>
7. Background & Assumptions
M-DNO targets a wide variety of 1 and 2 socket platforms including multi-node and monolithic (one HPM per chassis) systems for use in Enterprise, Cloud, and EDGE applications. In these applications the range of targeted chassis can be extremely varied, as can the location of the HPM within the chassis. Monolithic systems are typically, but not limited to, 1RU or 2RU designs. Multi-node systems on the other hand are expected to have a broad application set from 2U (e.g. 4 ½ Width HPMs) to 5U (e.g. 8-12 ½ Width HPM in vertical orientation) chassis and beyond. Rear and Front service models (including articulating chassis with removable top cover) are also considered.

When considering representative system depth targets the most common environments were distilled into the following categories:

1. Standard Depth Rack / Solution
 - ~1070mm+ deep with a single ½ width (210mm) or ¾ width (295mm) HPM
 - ~1070mm+ deep with two ½ width (210mm) HPMs

2. Mid Depth Rack / Solution
 - ~430mm to 570mm deep with a single ½ width (210mm) or ¾ width (295mm) HPM

3. Short Depth Rack / Solution
 - ~300mm to ~430mm deep with a single ½ width (210mm) HPM

This specification shall focus on products targeted to these primary environments. Section 12 illustrates design scenarios for each of these solutions providing the reader a clearer understanding of each category. This specification does not in any way prohibit alternate environments.

7.1. Common Industry Platform Features Considered

Mechanical
- Chassis installation within minimum EIA-310-D racks (but not limited to)
- PCIe Riser Connector fixed placement
- PCIe Cable route considerations
- Any additional fixed connector placement

I/O
- PCIe (Version 3.0, 4.0, 5.0, and future) Card configurations typically offered by Enterprise OEMs/CSPs/CoSPs.
- In 1U offerings with PCIe CEM based I/O, only Half-Length PCIe cards (167.6mm) are considered. This does not prevent Three-Quarter Length (254mm) cards, but support for Three-Quarter Length cards would restrict Compute Core placement (not defined).
- Use of Open Compute peripherals connectors on the HPM
 - OCP NIC v3.0
 - DC-SCM v2.0
 - Note: While each HPM outline requires 1 connector of each type, a system is not limited to 1 device of each type; configurations with 0 or >1 OCP NIC v3 / DC-SCM v2.0 are possible, but outside the scope of this specification
Power

- HPM supplied power to each fixed riser locations
- HPM Power Ingress and Egress connector placement for a variety of power layouts (PSUs with Cabled PDB, blind mate to bus bar, multi-node backplane, etc.)
- Considerations for Power Delivery to important chassis subsystems.

Thermal

- Thermal Design considerations including keep-out zone to enable thermal solutions that extend beyond the CPU and Memory sockets.

7.2. Architecture Specific Assumptions

Mechanical / Systems

- M-DNO based systems
 - Do not direct plug PSUs into the HPM but instead leverage Power Distribution Boards (PDB) or other system / rack level power infrastructure
 - Use remote fan designs in air cooled platforms (there is no HPM spec provision for Fan connectors on the HPM)
 - Support riser based I/O cards, cable based I/O cards or a mix of both
 - Leverage a variety of front and rear service models of I/O, PSU, HPM, etc.
- Systems designed for larger HPM Types may support use of smaller Types in a common chassis or sled with minimal changes (e.g. cables, riser quantities)
- Multi-node chassis designs leverage static rails with overall inner chassis opening width of 443mm (in 19” rack)
- Monolithic chassis designs leverage slide rails with overall inner chassis width of 431mm (in 19” rack)
- ¾ Width HPM must accommodate 2x 60mm M-CRPS PSUs within chassis opening described above (431mm)

I/O

- All M-DNO HPM Types enable (but do not require systems to leverage) use of “off the shelf” OCP NIC V3.0
- Mid / Standard Depth systems will typically leverage Coplanar OCP NIC layouts
- Short Depth systems will often require alternate implementation such as “floating” the OCP NIC (or no-pop)
- PCIe CEM based I/O will be the predominant use case for consideration but alternate form factors are not prohibited

DC-SCM

- All M-DNO HPM Types enable (but do not require systems to leverage) use of “off the shelf” DC-SCM 2.0
- Mid / Standard Depth systems will typically leverage Coplanar DC-SCM
- Short Depth systems will often require alternate implementation such as “floating” DC-SCM
8. HPM Layout Concepts & Definitions
To achieve the goals outlined in Section 7, this M-DNO specification defines four different HPM board “Types” – the design goal of each type is described below. Note that the M-DNO specification does NOT mandate CPU / DIMM quantities or define a specific area for CPU and Memory, design goals are provided for reference only.

CPU Class Assumptions:

- Entry CPU => Limited Memory Capacity and Bandwidth per CPU with basic capabilities
- Mainstream CPU => Moderate Memory Capacity and Bandwidth per CPU with advanced capabilities
- Extreme CPU => Extreme Memory Capacity and Bandwidth per CPU with extreme capabilities

M-DNO HPM Type Support Goals

- Type 1: ½ Width 1 CPU Depth Optimized
 - 1 Entry or 1 Mainstream CPU
 - 1 or 2 DPC
 - Supports cable based I/O and / or 2 board to board riser locations

- Type 2: ½ Width 1 CPU Feature Optimized
 - 1 Mainstream or 1 Extreme CPU
 - 1 or 2 DPC for Mainstream CPU, 1 DPC for Extreme CPU
 - Supports cable based I/O and / or 2 board to board riser locations

- Type 3: ½ Width 2 CPU “Shadowed”
 - 2 Entry or 2 Mainstream CPUs
 - 1 or 2 DPC
 - Supports cable based I/O and / or 2 board to board riser locations

- Type 4: ¾ Width 2 CPU “Spread” or Extreme 1 CPU
 - 2 Entry or 2 Mainstream CPUs with 1 DPC or
 - 1 Extreme CPU with 2 DPC
 - Supports cable based I/O and / or 3 board to board riser locations
Figure 1: M-DNO Board Type Layout Overview

Figure 1 provides a dimensional overview of the four board types, additional definitions and concepts are described below:

1. Due to the wide array of potential HPM and Chassis configurations, this specification defines a Near <<Element>> as the <<Element>> closer to the Datum (0,0 reference) and Far <<Element>> as the <<Element>> further from the Datum, examples for <<Element>> include:
 a. Corner
 b. Edge
 c. I/O Zone

An example of Near and Far terminology usage is shown in Figure 2.

Figure 2: Near and Far Terminology Example

2. The location of the DC-SCM and OCP NIC connector on the HPM shall be common across all types relative to the Datum (0,0)
3. “½ Width” refers to the common 210mm HPM width shared by Type 1, 2 and 3
4. “¾ Width” refers to the 295mm HPM width used in Type 4
5. “Full Width” HPMs are outside the scope of this specification and are defined by the M-FLW specification
6. HPMs narrower than \(\frac{1}{2} \) Width are also outside the scope of this specification due to the inability of supporting common DCSCM 2.0 and OCP NIC 3.0 connector locations as described in #2.

7. The goal of this specification is to provide HPM Interoperability of smaller M-DNO HPM Types in systems designed for larger M-DNO HPM Types with minimal modifications (e.g. board pan or I/O cable changes), as depicted in Figure 3:
 a. Type 1 HPMs can be used in systems which support Type 2, 3 or 4 HPMs
 b. Type 2 HPMs can be used in systems which support Type 3 or 4 HPMs

Figure 3: M-DNO Type Interop Goals

Implementors Note: Type 1 is represented with no fixed riser location support because it is expected that most Type 1 designs will exclusively use cabled based I/O due to board depth challenges. If feasible Type 1 HPMs may elect to implement the same riser locations as Type 2 and Type 3.
9. Mechanical

9.1. HPM Outlines

There are 4 M-DNO HPM Type Outlines defined as described in Section 8. High level outline dimensions are provided below. No tolerances are to be implied. DFX/CAD files will be provided for further detail.

The M-DNO Type 1 Outline is defined in Figure 4 below. Units are mm. Note: Type 1 is represented with no fixed riser locations, refer to the Implementors Note in Section 8.

Figure 4: Type 1 HPM Outline
The M-DNO Type 2 Outline is defined in Figure 5 below. Units are mm.

Figure 5: Type 2 HPM Outline
The M-DNO Type 3 Outline is defined in Figure 6 below. Units are mm.

Figure 6: Type 3 HPM Outline
The M-DNO Type 4 Outline is defined in Figure 7 below. Units are mm.

Figure 7: Type 4 HPM Outline

![Figure 7: Type 4 HPM Outline](image)

9.2. Board Datum and Mounting Holes

All M-DNO board types leverage a common datum location at the center of the mounting hole in the near corner of the board where the DC-SCM 2.0 connector resides. This allows for fixed elements (riser connectors, peripheral connectors, …) to have a common reference across all 4 board types.

With consideration of interoperability goals and the variety of targeted system configurations, a set of required board mounting hole locations are specified across the 4 M-DNO HPM Types in Figure 4-Figure 7. Note that the Type 4 outline in Figure 7 defines two recommended zones for mid-board mounting hole locations, the quantity of holes and location of the holes within the zone are implementation specific.

Note that on each board outline the PCB Datum hole is defined such that a collared standoff with tight fit can be used to control X-Y tolerances in HPM mounting. Additionally, the Details
depict a slotted hole to control rotation around the datum, a collared standoff can be used with tight fit to the top of the slot.

Implementors may choose to add additional board holes.

A design should follow good engineering practices in consideration of Platform Shock and Vibration requirements. Shock and Vibration requirements are not in scope of this specification.

9.3. Board and Assembly Thickness

The maximum board thickness allowed is 3.18mm nominal, assuming +10% max tolerance.

The maximum overall thickness of the board assembly, including any insulators and backing plates, is 5.86mm.

Backing plates are assumed to be allowed to protrude through cuts in the Chassis-to-Board bracketry.

These thicknesses are critical to ensure a consistent maximum height for system components (e.g. Riser solutions) across M-DNO HPMs. Refer to Figure 8 and Table 1 for typical approaches and example scenarios. Note that while the depicted chassis supports a board pan, the same maximum thicknesses apply to chassis with no board pan (e.g. a sled based solution).

Figure 8: Board and Chassis Stack-up Implications

Table 1. Board Stackup and Thicknesses

<table>
<thead>
<tr>
<th>(dimensions in mm)</th>
<th>1 HPM Height</th>
<th>2 HPM Thickness</th>
<th>3 Backplate</th>
<th>5 Gap Backplate to Base Chassis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical Nominal Range</td>
<td>5.0 - 5.86</td>
<td>1.57 - 3.18</td>
<td>2.0 – 2.6</td>
<td></td>
</tr>
<tr>
<td>Scenario 1 Nominal</td>
<td>5.2</td>
<td>2.6</td>
<td>2.2</td>
<td>0.4mm</td>
</tr>
<tr>
<td>Scenario 2 Nominal</td>
<td>5.86</td>
<td>3.18</td>
<td>2.6</td>
<td>0.08mm</td>
</tr>
</tbody>
</table>
Implementors Note:

Designers should consider that variations in HPM thickness combined with 4C+ connector selection may result in variation of the vertical offset locations of OCP NIC V3 and DC SCM 2.0 peripherals relative to fixed chassis openings and the top surface of the HPM. There are common connectors in the industry which will result in varying offset locations.

Figure 9 demonstrates how selecting the variance of midplane offset within the 4C+ connector can enable a common resulting peripheral offset relative to the top surface for varying HPM thickness (example offset Z = 0.49)

Note, the host thickness examples shown are common at the time of this specification being published, however, alternate thicknesses may become common in the future.

Designers should consult with vendors of SFF-TA-1002 4C+ to determine best options for their chassis application.

Figure 9: Example of consistent peripheral top surface offset relative to HPM

<table>
<thead>
<tr>
<th>Worst case Gap 5 scenario</th>
<th>5.5</th>
<th>3.5</th>
<th>~2.0mm</th>
<th>0</th>
</tr>
</thead>
</table>

9.4. Chassis-to-Board Bracket and Secondary Side Keep Outs

M-DNO board outlines have defined zero height secondary side keep outs driven by two key features:

1) Interoperability goals mean that larger HPMs (e.g. Type 3) could be placed in a chassis which also supports a smaller HPM (e.g. Type 2). In this instance, standoff hardware to support the smaller HPM could interfere with the larger HPM (which does not leverage
all the same mid-board mounting locations). These zero-height bottom side keep outs
prevent any interoperability interference.

2) The DNO HPMs shall allow for a Chassis-to-Board Bracket (Board Pan) which enables
different board layouts (and mounting hole locations) between HPM Types and Compute
Core designs, while maintaining compatibility to a common chassis. An example Board
Pan is shown in Figure 10 (note: this example depicts an HPM defined in the M-FLW
Specification)

M-DNO HPMs shall support required locations for chassis hook features that interface
between the chassis base and the Chassis-to-Board Bracket. These hook locations
require HPM secondary side zero-height keep out zones.

A supporting chassis base must provide hook geometry to interface the cutouts on the
Chassis to Board Bracket. See example in Section TBD.

The geometry of the Board Bracket is not specified.

Implementors Note: While most monolithic server designs benefit from a Board Pan it is NOT
expected that all systems supporting M-DNO HPMs will require a Board Pan. Specifically, sled-
based designs common in multi-node systems typically do not require a board pan.

The zero-height bottom side keep out zones reflecting both HPM Type interoperability and
Board Pan support are defined in Figure 11-Figure 14. In addition to the zero-height bottom
side keep out zones, there is a universal secondary side component height restriction of
1.6mm for all board types.

In some instances, an HPM or System designer may desire tall secondary side components
(such as special capacitors) that exceed the 1.6mm Secondary Side height restriction.
Although this should be avoided, a designer may implement local exceptions if the following
conditions can be met:

1. Exceptions are contained to small areas of the Secondary side, not to exceed 400mm²
 area per instance.
2. No two instances of exception are closer than 10mm, as to not drive excess cutouts in
 Chassis-to-Board bracketry.
3. The Chassis-to-board bracketry can be cutout to accommodate the exception.
4. The HPM thickness + backside component shall never exceed 5.86mm.
Figure 10: Example of Chassis-to-Board Bracket (Board Pan)

Figure 11: Type 1 HPM Secondary Side Zero-Height Keep Out Zones
Figure 12: Type 2 HPM Secondary Side Zero-Height Keep Out Zones

Refer to universal secondary side component height restriction
Figure 13: Type 3 HPM Secondary Side Zero-Height Keep Out Zones
9.5. HPM to Chassis Retention Mounting

The HPM and Chassis-to-Board Bracket assembly requires retention to the chassis base. There shall be a hole required for motherboard retention to the chassis. The hole is sized for common retention methods such as plungers, thumbscrews, etc. as shown in Figure 15. An appropriate KOZ associated with common retention hardware around the specified hole is TBD.

Figure 15: HPM Assembly to Chassis Retention Enablement
9.6. Board Handling

The HPMs shall implement a hole intended for a mechanical handle. This handle implementation is not specified, an example is shown in Figure 16.

The hole location shall be near the Far side edge of the Compute Core within the HPM. The specific location of the hole is not specified but should be placed considering Compute Core details, such as High-Speed IO cabling and Thermal solution keep outs.

Implementors Note: While the hole is required, HPM and / or System designers may choose to not utilize hardware in the hole location and instead provide alternate solutions to assist in board handling. As an example, if the hole location is not accessible when large thermal solutions are installed the designer may instead choose to provide a handling feature / touch point not tied to the HPM itself.

Figure 16: Example Board Handling Feature

9.7. Common Peripheral Location Requirements

This specification defines fixed placement for certain peripheral connectors to maximize reuse across designs.

These fixed peripheral subsystem connectors are:

- OCP NIC 3.0
- DC-SCM 2.0

The location of each of the connectors is defined in Figure 17.
9.8. Platform Interconnect Connector Placement

Figure 18: Platform Interconnect Connector Placement

Figure 18 depicts the location of the miscellaneous connectors defined in the M-PIC specification which are relevant to M-DNO HPMs.

Note that a Type 2 board is represented but applicable dimensions are provided for all board types. These dimensions are intended to maintain the connector locations constant relative to the nearest board corner across all board types. The only exception to this philosophy is the
USB-C location for Type 1 HPMs which is depicted but not dimensioned. Dimensions for Type 1 USB-C is provided separately in Figure 19.

Tolerances to the exact locations of all Platform Interconnect (M-PIC) connectors to ease design layout constraints are currently TBD.

Additional information on these connectors is available in Section 11.2 – Section 11.6 in this document.

Figure 19: Type 1 USB Location

9.9. Near IO Connector Placement

The M-DNO specification defines multiple HPM Type outlines which support different fixed riser configurations. In addition to any fixed riser implementation(s), cabled high speed I/O (HSIO) connectors may also be placed on the near side of the HPM.

9.9.1. Cabled Near IO Connectors

If cabled HSIO connectors are implemented, it is recommended that this connection shall utilize the SFF-1016 connector with signaling defined in the M-XIO specification, see Section 11.1 for more details.
9.9.2. **Fixed Riser Connectors**

Figure 20: Fixed Riser Location and Numbering

1. Three fixed riser locations are defined across the M-DNO HPM board Types as shown in **Figure 20**.
 a. The dimensioned locations represent riser connector keep in zones
2. Implementation of each riser location is **optional** across all M-DNO board Types.
3. M-DNO HPMs which implement fixed risers shall do so in any / all of the three specified locations.
4. Each fixed riser location is specified as follows (and summarized in **Table 2**):
 a. It is recommended that HPMs implement fixed risers using the connector described in **Section 11.1**.
 b. Connector locations are fixed horizontally (X – direction)
 i. The objective of this requirement is to enable Chassis and Riser Mechanical Reuse between generations of HPMs.
 ii. Background information on these location choice requirements are detailed in **Section TBD**.
 iii. The dimensions indicate riser centerlines. If a chosen connector centerline is offset from the riser centerline, the designer shall adjust connector location to accomplish the Riser centerlines.
 c. Connector locations are fixed vertically (Y – direction)
 i. A keep in zone is specified to not restrict riser connector selection
 ii. Riser connectors shall fit within the specified keep in zone
 iii. The riser connector shall be oriented such that it touches the near edge within the keep in zone (27.4mm reference from datum)
 d. For information on power provided to Riser locations via the HPM refer to **Section 11.1.2**.
 e. Each riser has an associated retention hole as described in **Section 9.11**.
5. ½ Width M-DNO HPM Types (1/2/3) support two riser locations (Riser 1 and Riser 2)
 a. These locations are shown in **Figure 21** utilizing the recommended riser connector defined in **Section 11.1**.
6. ¾ Width M-DNO HPM Type 4 supports all riser locations (Riser 1, Riser 2, and Riser 3)
 a. These locations are shown in **Figure 22** utilizing the recommended riser connector defined in **Section 11.1**.
Table 2: Near IO Riser Attribute Requirements

<table>
<thead>
<tr>
<th>Item</th>
<th>Fixed</th>
<th>Flexible Choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector Choice</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>X-dimension location</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Y-dimension location</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Retention hole X-Y location</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Additional IO connector locations, beyond those specified</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

BOM Population Note:
Custom BOM Population choices are made at the discretion of a customer and are not covered by this specification. (This includes any depopulation choices for cost savings.)

Figure 21: PCIe Near IO Connector Locations (Type 1/2/3) (Riser Centerlines)
9.10. Far Side IO Connector Placement

IO connector locations on the Far side of the HPM are not specified because they are all assumed to be cable-only connections and will not have major dependencies to chassis or subsystem reuse compatibility. The designer is free to choose/place these however they wish while respecting component height restrictions and other specified keep outs such as the Ingress / Egress power zone. It is recommended that high speed connectors placed on the Far Side leverage the connector described in Section 11.1.

9.11. Mounting Hole Requirements for IO Module Retention

There are required mounting holes associated with each Near IO fixed riser location regardless of whether the riser connector is implemented. The intent of requiring these holes is to always make retention holes available to system designers (including systems with cable based I/O).

These holes are intended to be used for mechanical module retention (such as PCIe Risers, or other modules that require mechanical retention in the HPM area). There is one associated hole per defined riser location as shown in Figure 21 and Figure 22.
- The retention holes associated with Riser 1 and Riser 2 are required on all M-DNO HPMs
- The retention hole associated with Riser 3 is required on all M-DNO Type 4 HPMs

The HPM requires a 3.68mm diameter hole. Chassis designers may choose the hardware and utilization method for riser retention. The hole location was selected to minimize impact of signal routing to the fixed riser locations as well as be accessible when cards are installed as shown in Figure 23.

Figure 23: Retention hole location relative installed PCIe card

![Retention hole location relative installed PCIe card](image)

9.12. Primary Side Component Height Restriction Zones

All M-DNO board types shall adhere to a common approach of two different component height restriction zones as shown in Figure 24.

- The 11.3mm restriction zone is intended to avoid interference with PCIe CEM cards.
- The 12mm restriction zone is intended to allow for extended heatsinks and other thermal solutions to extend towards the far side of the HPM while not prohibiting cabled HSIO (i.e. SFF-1026)

Note that DIMMs, heatsinks, and connectors placed by this specification may selectively violate stated height limits for a given zone. Additionally, HSIO connectors not placed by this specification may violate these height restriction zones when mated, though HPM designers should do so with careful consideration of potential system use cases of their HPM.
9.13. Cabling Enablement Keep Out Zones

For the reasons described below, this specification does not specify a specific Keep Out Zone for cable enablement.

Type 1/2/3:
½ Width HPMs are expected to be deployed in a variety of system orientations including dense multi-node designs where the ability to route cables through the CPU area (Near Side to/from Far Side) is difficult if not impossible. Care was taken in developing this specification to minimize the need for such cables in dense designs.

Type 4:
While ¾ Width HPMs are expected to be deployed in more predictable system orientations, a specific Keep Out Zone is not defined as there is a high degree of variability in the area taken by the “Compute Core” (CPUs and associated DIMM slots) based on the specific design.

When defining HPM features such as mounting hole locations and board pan keep outs it was assumed that most HPM designs would center the Compute Core allowing for cables to be routed on either edge of the HPM in any remaining space. However, offset Compute Cores are not prohibited.
Figure 25: Example Type 4 Cable KOZ Layout
10. Power
M-DNO compliant HPMs are assumed to be powered from 12V DC. This specification does not cover alternate PSU voltage sources (e.g. 48V DC implementations) as the burden for alternate power sources is placed on the system power delivery infrastructure (PDB, bus bar, etc.).

10.1. HPM Power Zones
To enable a variety of system power configurations (See Section 13) there are two defined bi-directional power zones for each HPM type referred to as the “Near” and “Far” Ingress / Egress zones as shown in Figure 26. These zones are intentionally placed in opposing corners of the HPM to maximize flexibility of system orientation. Connectors placed within the Near and Far zone adhere to the “2x6 + 12 SB PICPWR” definition within the M-PIC specification and are always defined as bi-directional such that they may be used to provide power to the HPM (Ingress) or to power downstream subsystems (Egress) from the HPM. Additional power zones include power egress to DC-SCM, OCP NIC and each fixed board to board Riser location.

Figure 26: M-DNO Power Zone Overview (Type 2 and 4 Depicted)

10.1.1. Near and Far Bi-Directional (Ingress / Egress) Power Zones
Ingress / Egress Cabled Power Connector

- **Power Connector Type**: 2x6+12s PICPWR Vertical Header or Right-Angle Header.
- **Manufacturer P/N**: Bellwether Vertical Header TBD PN; Bellwether RA Header TBD PN. Refer to M-PIC Specification for additional details.

 Note, connector vendors and part numbers are current as of publication. Please refer to connector vendors or [document TBD] for part numbers that best meet the application.
- **Connector Power Rating**: 864W
- **Typical usage**: Power ingress to HPM and / or egress to peripheral subsystems
It is assumed that most systems will provide power to M-DNO based HPMs via a cabled solution from a Power Distribution Board (PDB). To maximize reuse of power delivery across all M-DNO HPMs the required connector for all cabled Ingress / Egress power is the 2x6 + 12S Bellwether UHC as depicted in Figure 27.

Each connector provides 864W of sustained power as well as 12 sideband signals enabling two sets of M-PIC PICPWR signals. When used for power Ingress this enables a single connector to interface with a power distribution board and when used for power egress this enables a single connector to fan out to two downstream subsystems. Refer to the M-PIC specification for more information on PICPWR compliant connectors.

Figure 27: Bellwether UHC 2x6 + 12S PICPWR Connector

Far Power Zone
The Far Power Zone includes required connector location(s) such that any system capable of providing power to the Far Zone of the HPM can power all M-DNO designs. While it is required for the HPM to implement these connectors they may be depopulated in certain system configurations.

Two connector locations are defined for each board type in the Far Power Zone. Refer to Section 10.1.6 for specific locations per board Type.

For Type 1 and 2 HPMs only a single Far connector is required to be implemented while implementation of a second connector is optional based on HPM power requirements. HPM designers electing to implement only a single connector may choose between either of the two specified locations.

For Type 3 and 4 HPMs, both far connector locations are required to be implemented.

While it is expected that many systems will implement the required connector and provide power via cable(s), another M-DNO use case involves blind mating HPM “sleds” into multi-node chassis infrastructure. HPMs intended exclusively for these use cases may deviate from the requirements above and choose to adapt a blind mate / board to board style connector along the far edge of the board. No specific connector is defined for these applications.
Implementors Note: HPMs which implement the cabled Bellwether UHC connector may still be used in multi-node systems via an interposer or interface board. Refer to Section 12 for an example of such a system.

Figure 28: M-DNO HPM with multimode interface board

Near Power Zone
Due to the expected density of HPM designs in this area of the board the Near Power Zone may be implemented at the discretion of the HPM designer.

To increase the likelihood that this zone can be implemented, connectors may be placed anywhere within the designated zone area rather than having a fixed location. Refer to Section 10.1.6 for this zone outline.

If Near zone power connectors are implemented, they are not required to be populated in all system configurations.

The near power zone does not allow for blind mate / board to board style connector adaptation.

Implementors Note: It is recommended that when the Near Power Zone is implemented that the connector count (1 or 2) matches the connector count in the Far Power Zone. This configuration enables peak flexibility for Power Ingress / egress to / from the HPM.

10.1.2. Fixed I/O Riser Location Power

- Power Connector Type: Amphenol G03V213X2HR
 Note, connector vendors and part numbers are current as of publication. Please refer to connector vendors or [document TBD] for part numbers that best meet the application.
- Connector Power Rating: 180W
- Typical usage: Power egress for 1 (required) or 2 (optional) 75W PCIe CEM Devices per Riser
HPMs are required to deliver a minimum of 87W of power per implemented fixed riser location (Up to three). This requirement is defined to guarantee each riser location can support a minimum of one 75W PCIe CEM card and minimize power cabling requirements in dense systems. Additional power is provided to each riser beyond PCIe CEM 5.0 specification to budget for miscellaneous logic on risers and VR conversion losses. See Table 3 for calculation of 87W effective total power per slot.

HPMs may choose to deliver a full 180W of power to the riser connector in order to provide power to a second 75W PCIe CEM card at each riser location further reducing power cabling impacts to system designs.

Additional supplemental I/O power (e.g. for a high powered GPU) is not defined and is assumed to be cabled directly from a system PDB.

I/O Risers must comply with M-PIC PICPWR sideband signaling requirements.

Table 3. Minimum HPM Power Provided to Fixed Riser Locations

<table>
<thead>
<tr>
<th>Power Rail</th>
<th>75 W Slot¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>+3.3Vaux</td>
<td>Generated on PCIe riser. Derived from +12V</td>
</tr>
<tr>
<td>+3.3V (Vcc3_3)</td>
<td>Generated on PCIe riser. Derived from +12V</td>
</tr>
<tr>
<td>Voltage</td>
<td>12V nominal</td>
</tr>
<tr>
<td>Current</td>
<td>7.25A total:</td>
</tr>
<tr>
<td></td>
<td>5.5 A (CEM 5.0) +</td>
</tr>
<tr>
<td></td>
<td>1.0A (VR conversion to Vcc3_3) +</td>
</tr>
<tr>
<td></td>
<td>0.35A (VR conversion to +3.3Vaux) +</td>
</tr>
<tr>
<td></td>
<td>0.40A (misc.)</td>
</tr>
</tbody>
</table>

10.1.3. DC-SCM 2.0

- **Power Connector Type**: See OCP DC-SCM 2.0 specification (Refer to Section 5)
- **Connector Power Rating**: 50W
- **Typical usage**: Power egress for DC-SCM 2.0

10.1.4. OCP NIC 3.0

- **Power Connector Type**: See OCP NIC 3.0 spec (Refer to Section 5)
- **Connector Power Rating**: 80W
- **Typical usage**: Power egress for OCP NIC 3.0
10.1.5. **Platform Custom Zone (Type 4 Only)**

Power to the Platform Custom Zone is not defined as it is considered implementation specific.

10.1.6. **Ingress / Egress Power Connector Locations**

Figure 29 denotes the locations of the bidirectional Near and Far power ingress / egress connectors.

As described in Section 10.1 the two Far power connector locations are fixed for each board type with common spacing between the two locations across all board types. Refer to the drawing and table within *Figure 29* for the fixed location for each board type. Note that while for simplicity only a Type 2 board is depicted the dimensions listed are valid for other board types.

If implemented, Near connectors may be placed anywhere within the depicted zone which is common across all board types (including Type 1).

Figure 29: Near and Far Power Zone Connector Locations

10.2. **HPM Power Planes**

The HPM power planes have the following features
• At maximum load, the HPM power shapes temperatures have a maximum of 30°C T-rise and do not exceed 100°C absolute

• At maximum load, the maximum HPM voltage drop (IR loss) between primary power ingress connectors and associated loads or egress connectors is less than or equal to 1%

• The HPM may implement fusing to prevent damage to connector and traces

10.3. HPM Bulk Capacitance

There are no specific Bulk Capacitance requirements defined for M-DNO based HPMs as this is an implementation specific system design requirement.
11. I/O System (Electrical Interfaces)

The HPM shall be required to implement electrical interfaces that must be in compliance with the DC-MHS family of specifications. Refer to Section 5 for additional details.

This section provides additional guidance for specific connectors on M-DNO HPMs.

11.1. High Speed IO (HSIO) Connectors

HSIO connector selections are strongly suggested, but not required for compliance. Use of the suggested HSIO connectors will ensure broader compatibility with chassis, riser, and cable interfaces in the future. The selection is intentionally not stated as “required” so the specification allows for future selection of new connector technologies, as may be required by IO speeds and bandwidth changes in future generations of HPM.

Requirement: Connector Choices must be compliant with M-XIO specification.

Table 4: M-DNO Connector Recommendations

<table>
<thead>
<tr>
<th>Recommended Connector</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Riser</td>
<td>Amphenol G03V213X2HR Compatible with 1016 cabled solutions</td>
</tr>
<tr>
<td>Near HSIO</td>
<td>SFF-TA-1016 Common interconnect for cabled connections and Riser solutions</td>
</tr>
<tr>
<td>Far HSIO</td>
<td>SFF – TA – 1026 Appropriate due to low profile and ability to fit under thermal solutions</td>
</tr>
</tbody>
</table>

The Near HSIO location and flexibility is further described in Section 9.9.

11.2. Internal USB

- M-PIC Section Reference: “Internal USB3 Connector”
- Connector Requirement: Required (may be de-populated)
- Connector Placement: Specified
- Connector: TBD

Electrical implementation for an internal USB3 connector follows the M-PIC specification. For M-DNO HPMs the connector shall be placed as defined in Section 9.7.

11.3. Intrusion Switch

- M-PIC Section Reference: “Intrusion Switch”
- Connector Requirement: Required (may be de-populated)
- Connector Placement: Fixed Location
- Connector: FIT (Foxconn) p/n HSM1033-K110-9H

Note, connector vendors and part numbers are current as of publication. Please refer to connector vendors or [document TBD] for part numbers that best meet the application.
Electrical implementation for the intrusion switch follows the M-PIC specification. For M-DNO HPMs the connector shall be placed at the location defined in Section 9.7.

11.4. Boot Storage Peripheral

- **M-PIC Section Reference:** “Boot Storage Peripheral”
- **Connector Requirement:** Optional
- **Connector Placement:** TBD if zone or fixed location specified
- **Connector:** M-XIO x4 + PICPWR Compliant Connectors

Electrical implementation for the boot storage peripheral follows the M-PIC specification. The cabled interface defined in M-PIC also requires compliance with M-XIO for the high-speed interface. For M-DNO HPMs the connector placement is TBD.

11.5. Control Panel

- **M-PIC Section Reference:** “Control Panel Interfacing”
- **Connector Requirement:** Primary: Required (may be de-populated), Secondary: Optional
- **Connector Placement:** Fixed Location
- **Connector:** Molex Pico clasp (low halogen) 20 pin vertical PCB Header 2083912003

Note, connector vendors and part numbers are current as of publication. Please refer to connector vendors or [document TBD] for part numbers that best meet the application.

Electrical implementation for the Control Panel(s) follows the M-PIC specification. For M-DNO HPMs the Primary Control Panel is required while the Secondary Control Panel is optional, the location of both control panel connectors is defined in Section 9.7.

11.6. Power Analog Connector

- **M-PIC Section Reference:** “PDB to HPM Analog Connector”
- **Connector Requirement:** Required (may be de-populated)
- **Connector Placement:** Fixed Location (optional secondary placement)
- **Connector:** Molex Pico clasp (low halogen) 6 pin vertical PCB Header 2083810603

Note, connector vendors and part numbers are current as of publication. Please refer to connector vendors or [document TBD] for part numbers that best meet the application.

Electrical implementation for the Power Analog Connector follows the M-PIC specification. For M-DNO HPMs implementation of this connector within the Far Ingress / Egress Power Zone is required as defined in Section 9.7. Additionally, it is recommended that M-DNO HPMs which implement the Near Ingress / Egress Power Zone provide a BOM population option for a Power Analog Connector within or directly adjacent to the Near Ingress / Egress Power Zone.

Implementors Note: It is recommended that if the Near Power Zone is implemented that the HPM provide an additional option for the Power Analog Connector to be populated in the Near...
Power Zone. Care should be taken in providing a BOM population option which minimizes trace stub between the two connector locations for this analog connector.
12. Supplemental Material: M-DNO Conceptual Implementation

Examples

The M-DNO specification has multiple form factor types to address various product types and sizes. In this section some of the possible configurations and usages for the different Types will be shown.

Note: Image representation of elements may not be to scale, and is subject to change

It is understood that the configurations shown represents a small sample of what could be possible. This section also conveys the reasoning behind the different sizes of HPM associated with the four types.

Type 1

The application for Type 1 is the densest product size, that would be able to trade-off PCIe lane access and CPU cooling for the smallest size. Type 1 designs are intended to accommodate ~430mm overall product depth. These products are typically target for EDGE applications and mounting, where I/O, Storage, and Power are all accessed from the same end of the chassis. Type 1 designs are also optimized for embedded systems leveraging smaller core compute elements such as SOCs and FPGAs.

Type 1 configuration example – 1 Node
Type 1 Configuration Example – 2 Node
Type 1 designs are also the most likely to locate the DCSCM and NIC elsewhere in the design (via cable) or to no-pop them entirely and potentially leverage the connectors only. An example Type 1 system layout is shown below that enables 300-350mm chassis solutions

Type 1 Configuration Example – Short Chassis
Type 2

The Type 2 HPM increases the depth and maintains the same board width as Type 1. The increase in depth is done to support PCIe direct attach risers and EVAC thermal solutions as well as larger CPU sockets.

Type 2 Configuration Example – 1 Node Edge
The Type 2 HPM would also be applicable for traditional enterprise server applications in or 1U or 2U heights. The variability of capabilities for I/O and Storage would be plentiful and facilitated by different riser, cable, and mid-plane configurations.

Type 2 Configuration Example – Enterprise Server
The Type 2 HPM would also be suitable for 2 Node products.

Type 2 Configuration Example – 2 Node
Type 3

The Type 3 HPM grows in depth to allow 2 socket “shadow core” designs, specifically to support 2 Nodes across a chassis. In this configuration the ability to utilize the full PCIe resources is de-prioritized. The ability to support EVAC thermal solutions would be applicable.

Type 3 Configuration Example – 4 Node
Type 4

The Type 4 HPM is the only Type to grow in width. The primary driver for the Type 4 form factor is ability to support a dual socket “spread core” 2 Node product with adjacent PSUs in a 19” (or larger) rack. To achieve this 2 socket design a concession is made on memory socket support so that only one DIMM per channel is expected on a 8 channel per socket architecture. The other features intended to be supported on a Type 4 HPM would be full PCIe lane count, and EVAC thermal solutions.

Type 4 Configuration Example – 2 Socket Spread Core
Another possible Type 4 HPM would be a 8 memory channel CPU with 2 DIMMS per channel as in Type 2, but with more on board peripherals than the other ½ width Types.

Type 4 Configuration Example – Expanded Features 1 Node
Multi-Node Specific

Multi-Node Adaptation

As described in the Power Zone Section 10.1, multi-node HPMs may choose to adapt the HPM to add board to board connectors on the Far board edge intended to directly mate into chassis power infrastructure (mid-plane, PDB, bus bar etc.).

Un-adapted HPMs can also be leveraged with this type of chassis infrastructure by leveraging an interposer board between the HPM and the chassis infrastructure.

The example below depicts using an un-adapted HPM on the left and an adapted HPM on the right in a similar system. For this example, shown is a Type 2 node opting to “float” the DC-SCM and NIC cards as opposed to placing them Co-Planar. Additionally, a 21” chassis is depicted.
Multi-Node Management

How to deploy a multi-node management infrastructure using base specification compliant HPMs is outside of the scope of this specification. However, various common methodologies were evaluated to ensure that M-DNO compliant HPMs could be leveraged into these infrastructures. As an example, a small low-cost local node controller could be connected to the DC-SCM 4C+ connector and then connected to a chassis manager or multi-node controller.
13. **Supplemental Material: M-DNO Power Zone Usage Examples**

The M-DNO specification provides some flexibility to HPM implementors and system designers when it comes to Power Zone Usage. In this section, demonstration of some expected configurations leveraging these various options are conveyed. For simplicity's sake, the different power flows are demonstrated using the same HPM board Type (Type 2), however the power zone use case flexibility is common across all board types.

The first example listed below shows a simple monolithic (one HPM) system where PSUs feed power to the system PDB, the HPM power zones are utilized in the minimum required model:

- Far Side Ingress: Power from PDB to HPM
- Far Side Egress: None
- Near Side Ingress: None
- Near Side Egress: None
- Supplemental Power to I/O: None

Example 1: Monolithic Basic One Zone Ingress

![Diagram showing a monolithic basic one zone ingress configuration]

1050

Date: 04/21/2022
In the second example below, a monolithic (one HPM) system where PSUs feed power to the system PDB is shown. However, in this example, the optional Near Side power zone is leveraged:

- Far Side Ingress: Power from PDB to HPM
- Far Side Egress: None
- Near Side Ingress: None
- Near Side Egress: Supplemental power cable to CEM card aux (Note that the PICPWR definition requires a control “puck” to power gate these cables)
- Supplemental Power to I/O: From Near Zone (These cables could also be sourced from the PDB directly and would not require a “puck” as control logic could be based on the PDB.)
- Note that because the HPM depicted supports both power Ingress / Egress zones the same HPM could be used in systems which leverage the far side for ingress power

Example 2: Monolithic Leveraging Both Zones
The third example below illustrates a multi-node (>1 HPM) system with a Far Side PDB that could be supplied via PSUs, system level bus bars, or even rack level power distribution.

- Far Side Ingress: Power from PDB to HPM (while these connections are depicted with cables the HPM could also be adapted to support a board-to-board connector to chassis power infrastructure like a PDB as noted in Section 10.1)
- Far Side Egress: None
- Near Side Ingress: None
- Near Side Egress: None
- Supplemental Power to I/O: From the PDB directly (do not require a “puck” as control logic could be based on the PDB)

Example 3: Multi-node with Far Side PDB
The fourth example below demonstrates a multi-node (>1 HPM) system with a Near Side PDB that could be supplied via PSUs, system level bus bars or even rack level power distribution.

- Far Side Ingress: None
- Far Side Egress: Used to power Storage peripheral subsystem,
- Near Side Ingress: Power from PDB to HPM (cabled)
- Near Side Egress: None
- Supplemental Power to I/O: None
- Note that because the HPM depicted supports both power Ingress / Egress zones the same HPM could be used in systems which use to leverage the far side for ingress power

Example 4: Multi-node with Near Side PDB
14. **Appendix A - Checklist for IC approval of this specification (to be completed by contributor(s) of this Spec)**

Complete all the checklist items in the table with links to the section where it is described in this spec or an external document.

This will be filled out at V1.0
15. Appendix B-<supplier name> - OCP Supplier Information and Hardware Product Recognition Checklist

This is a Base Specification and no specific designs can be derived from this specification. Future Design Specifications will be established based on DC-MHS Rev 1.0 specifications, and supplier information and HW checklist will be applicable and filled by future contributors.