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Need for tight time-uncertaint

Failures and their impact on Clock

Synchronization

Sundial Design and Implementation
Practical Considerations
Application Access to Clock
Evaluation

Call for Action



Need for synchronized clocks in datacenter

e Simplify or improve existing applications
o Distributed databases

© ==

Spanner FaRMv2

o Consistent snapshots

e Enable new applications
o Network telemetry, e.g., per-link loss/latency, network snapshot
o One-way delay measurement for congestion-control
o  Distributed logging and debugging

e And more, if synchronized clocks with tight bound are available



Need for time-uncertainty bound (g)

Server 2

Server 1

Wait: a common op for
ordering & consistency

Write X
® > time
T-1
Read X Read X
@- 9 ~ time

. Y
T Wait to ensure others pass T

]

Time-uncertainty bound (g)
decides how much to wait



Need for tighter time-uncertainty bound ()

Network € Processing
FPGA: <10us
RDMA: <10us SmartNIC: <10ps
NVMe: ~10us

€

Even 10~20us € causes 25% extra median latency™!

Sundial: ~100ns time-uncertainty bound even under failures
2 to 3 orders of magnitude better than existing designs

*FaRMv2 [SIGMOD’ 19]



State-of-the-art clock synchronization

Calculate offset
Between 2 clocks

Path of messages

Network-wide
synchronization

Periodic
synchronization

TA \d/ > Clock A
T'B Clock B
-
A B

offset=T"+d- TP
= RTT/2

Sync between neighboring devices
Fixed and symmetric delay (d=RTT/2)

Spanning tree:
Clock values distributed along tree edges

Clocks can drift apart over time, so
periodic synchronization is needed



Calculation of time-uncertainty bound ¢

Frequency-related failures:
- Cooling, voltage fluctuations

last_sync

—— Connectivity failures:
now-1 e - link/device failure that break
the spanning tree

e=(now-T ) X max_drift rate + c

last_sync



Impact of failures on max_drift rate

e Clocks drift as oscillator frequencies vary with temperature, voltage, etc.
o E.g., frequency +100ppm between -40~80 °C from an oscillator specification.
o Various failures cause frequency variations: cooling failure, fire, voltage fluctuations, etc.

e max_drift rateis set conservatively in production (200ppm in Google TrueTime)

e Reason: must guarantee correctness
o  What if we set it more aggressively? A large number of clock-related errors (application
consistency etc.) during cooling failures!

<100ns < 500ps 200ppm

e=(now-T ) X max_drift_rate+tc

last_sync

1. Need very frequent synchronization



Impact of failures on now-T

last_sync

Needs controller to recover:
If recovery takes 100x, now-T, gme JrOWS 100x

Root’s direct children:
f Large € when affected by failure

Connectivity Continue to synchronize

recovery time Other nodes: - 8
Large ¢ all the time
to prepare for
unnoticed failures

Don’t know about
the link failure

2. Need fast recovery from connectivity failures
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Sundial design overview

Hardware-software codesign w/ two
salient features:

1. Frequent synchronization

2. Fast recovery from connectivity failures

Centralized Controller

Software:
- Pre-compute the backup plan

Device
Software:
- Enable the backup plan
Config l < 500ps T Failure
local recovery | report
Hardware:

- Message sending & processing
- Failure detection

1



Sundial hardware design

3 key Frequent messages Fast failure detection Remote failure detection
aspects Every ~100us Small timeout Synchronous messaging
Normal time After failure Recovery

Every ~100us AT

Synchronous )
Messaging

Pre-assigned by

whole subtrée rent < ihe controller
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Sundial software design

Controller: pre-compute the backup plan
Option 1

Option 2

1 backup parent per device

Multiple options for
the backup parent Generic to
different

Device can't distinguish failures

different failures

13



Sundial software design
Controller: pre-compute the generic backup plan

Any single link failure
Any single device failure
Root device failure

Any fault-domain (e.g., rack, pod, power) failure:
multiple devices/links go down

1 backup parent per device

Backup plan
1 backup root

14



Backup plan that handles root failure

Backup root: elect itself as the new root when root fails (normal device otherwise)

? How to distinguish root failure from other failures?

! Get independent observation from other nodes
Root Root

Backup root Backup root

Non-root failure: continue receiving msg Root failure: no msg

[backup root only] 2nd timeout: elect itself as the new root

15



Backup plan that handles fault-domain failures

If one domain failure:
1. Breaks connectivity

2. Takes down backup parent /g
&

Avoid this case when computing the backup plan

16



Evaluation

e Testbed: 552 servers, 276 switches

e Compare with state-of-the-art plus €
o PTP+g, PTP+DTP+¢, Huygens+¢

e Metrics: €

e Scenarios:

o Normal time (no failure)
o Inject failure: link, device, domain
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During normal time (w/o failures)

Time-uncertainty bound distribution over all devices

= Sundial == PTP+¢e PTP+DTP+e == = Huygens+e (calculated)
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>2 orders of magnitudes lower during normal time
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During failures

—~
(72)
L=

~

Time-uncertainty bound

Time series of time-uncertainty bound

== Sundial == PTP+e PTP+DTP+e == == Huygens+e
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>2 orders of magnitudes lower during failures
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How Sundial’s different techniques help

o 1000000 PTP+e

§ 100000

S \ +frequent messages every ~100us
£ 10000

ES 1000

e

5 100 ,

qE, " WWWWMMWW’WWW +backup p|an (:Sund|a|)

= 0 50 100 150 200

t Time (s)

failure
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Sundial improves application performance

e Spanner: 3-4x lower commit-wait latency

e Swift congestion control: with use of one-way-delays, 60% higher
throughput under reverse-path congestion

e Working on more applications using Sundial
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Conclusion

e Time-uncertainty bound is the key metric
o  Existing sub-ps solutions fall short because of failures

e Sundial: hardware-software codesign
o Device hardware: frequent message, synchronous messaging, fast failure detection
o Device software: fast local recovery based on the backup plan
o Controller: pre-compute the backup plan generic to different failures

First system: ~100ns time-uncertainty bound

2\
é Improvements on real applications
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Abstract

= Clock synchronization is critical for many datacenter applica- tions such as distributed
transactional databases, consistent snapshots, and network telemetry

= The state-of-the-art clock synchronization solutions focus on improving clock pre- cision but
may incur significant time-uncertainty bound due to the presence of failures



This should be the last slide

[ ] . .
before your closing slide
a O C I O n (remove this note before submitting your presentation)

= Check out the Sundial paper
» Check the Time Appliances Project and our talk on
Sundial: Fault-tolerant Clock Synchronization for Datacenters



https://www.usenix.org/system/files/osdi20-li_yuliang.pdf
https://www.youtube.com/watch?v=AUU0A9gVkvw
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