Collaboration between
CPU and Near-Data Accelerators
for ML Training

= Benjamin Cho, Yongkee Kwon, Sangkug Lym, and Mattan Erez
= The University of Texas at Austin

N

¢¢¢¢¢¢¢¢ - OCP
%kﬂ 2
;»5:@”;: REGIONAL

LI ¢

7assecesats SUMMIT

$$$$$

Near-Data Acceleration

* Normal memory access

- Point of BW reduction

N
CPU \

MO M1 .. M@

Open. Together.

Near-Data Acceleration

« Normal memory access « Near-data memory access
_~ Point of BW reduction Locate PEs between mux and memory
/ 1 :
_N - AE:J,____'
\ 1 | PEO || PET PE (n-1)
CPU CPU —— I I
MO M1 o Meeny| Mo || M . [M(n-1)
TR0

High memory BW + Low memory-access energy

iiii

CRARY

........

B . Open. Together.

Near-Data Acceleration in Main Memory

* NDAs: accelerators with high memory capacity
* Collaboratively process the same data

' "~/ DRAM Die /
i i 30 || 3o] 3o [l <
o]] pRAM|IDRAMESIDRAM ‘ (.
;AD B) chip |f chip [chip A - f DATA
\ FSM
N T 25D o
ogic Die

Collaborative processing Example per-rank NDA in high-capacity DRAM

Open. Together.

An Ideal Scenario for CPU-NDA Collaboration

* Two workloads with different requirements

* Latency sensitive - CPU
* Throughput oriented = NDAs

- Sharing large read-only data
* Data replication = expensive
* No coherence required

Any applications that meet above conditions?

iiii

‘‘‘‘‘‘‘‘‘‘
Y

. Open. Together.
Gl A / p g

Collaboration Opportunity in SVRG

Proc. | Workload Advantage
CPU | Main training Cache locality
NDA | Summarization | Memory BW
for (outer_loop) { //,/”’ S \l,\ {
|g - Summarize(s,A)r 4—0,9 W\
for (inner_loop) { CPU i 1 Ta]
a = sample(A) NDA | | NDA | .. | NDA
w = f(w,s,g,a) 1 LLC Mem | | Mem Mem
; Wi>19 sIa1]l [[sTAz]l ~ [[s[An
S = w

Open. Together.

Exploiting Concurrent Access in SVRG

5 Epoch g
CPU -

Original algorithm

' H N A H
H ! \ p ! o
H ! \ 4 ! K
i ' \ . 1 N
H ! & / | 4
! 1 1
' 1 1
P 1 1
f 1 1
' 1
1

How often?

Open. Together.

Exploiting Concurrent Access in SVRG

. Epoch g
CPU .
Original algorithm g Z
How often?
Epoch
CPU
Proposed: 5 v \)
Delayed update NDA 7 Ay A0y

-
One epoch behind

Open. Together.

Training loss - Optimum

Collaboration Results

1E-01

1E-03

1E-05

1E-07

1E-09

1E-11

1E-13

1E-15

* Algorithm: Logistic regression

HO, Epoch (N), Ir=4e-3
--HO, Epoch (N/2), Ir=4e-3
--HO, Epoch (N/4), Ir=5e-3

ACC, Epoch (N), Ir=4e-3
—ACC, Epoch (N/2), Ir=4e-3
—ACC, Epoch (N/4), Ir=5e-3

with I2 regularization
* Dataset: CIFAR1O
- Compare convergence speed

\\‘\‘ —DelayedUpdate, Ir=4e-3

50 100
Time (sec)

* HO: host-only execution

* ACC: accelerating summarization
with NDAs

150 - DelayedUpdate: concurrent host-
NDA execution

Open. Together.

Main Challenges for Concurrent Access

1. Acommon data layout for the CPU and NDAs

2. Tracking global memory controller (MC) state

Open. Together.

Interleaving Pattern-Aware Memory Allocation

S
CHO, RKO CH1, RKO

Row y | B[6] |

CHO, RK1 CH1, RK1

ECH ETR

Open. Together.

Interleaving Pattern-Aware Memory Allocation

For A[i] += BJi], Naive Layout Proposed Layout

CHO, RKO CH1, RKO . CHO, RKO CH1, RKO

Row y EEE EGE - IECH EUH
CHO, RK1 CH1, RK1 CHO, RK1 CH1, RK1
EUH _ B[6] |

Address interleaving (for CPU) + Rank locality (for NDAs)

lllll

ddddd

EQE ,. Open. Together.
A = P g

Problem of Uncoordinated MCs

Invisible to host MC

/.

@cycle x Host MC NDAO MC MO Open Bank 1, Row 54

* NDA1 MC > M1 Read Bank 7, Row 12

Tracks incoming host commands

Open. Together.

Problem of Uncoordinated MCs

Invisible to host MC

/‘

@cycle x Host MC NDAO MC > MO Open Bank 1, Row 54

* NDA1 MC > M1 Read Bank 7, Row 12

Tracks incoming host commands

@cyclex + a

Host MC » NDAO MC > MO Host MC doesn’t know bank & timing state of MO

NDA1 MC > M1 Close Bank 7 after B cycles

iiii

CRARY

MO Sk
NI - OCP

S Ly | Open. Tog ether.

Replicated FSMs

Host Memory Scheduler Host
+ a Memory
2 [RKO State RK1 State | | Controfler
[ZAY
NDA
NDAO FSM’ NDA1 FSM’ Controller
_______ ..____________________________
< NDAO FSM NDA1 FSM) Update
a [I 2 A
= || RKo State’ RK1 State’ coess

To Rank 0 “i To Rank 1‘1
(1) Host Access (2) NDA Access

iiiiiii

Taeulre
Tuke
“he

3¢ REGIONAL

SUMMIT . * O en. TO ether.

Standardizing Concurrent Access

» Standardize address mapping interface
for concurrently accessible data layout

» Standardize NDA operations
for low-cost MC state tracking

10 o j, Open. Together.

Concurrent Access to Different Data™

» Main direction: avoiding/mitigating contention
* Fine-grained access interleaving
» Coarse-grained NDA operations
* Partitioning into CPU-only and shared memory regions
- Mitigating write/read turnaround penalties with NDA write throttling

*CHoNDA: Near Data Acceleration with Concurrent Host Access (arXiv 2019)

iiii

AN O T th
SO T Zz = pen. iogetner.

Conclusion

* Opportunity: Collaborative CPU-NDA execution for shared data
- Potential benefit: 2x faster convergence speed in the SVRG case study
* Challenges

» A common data layout for concurrent access
* Tracking global memory controller state

» Solutions
* Interleaving pattern-aware memory allocation
* Replicated FSMs

* And more...
* Concurrent access to different data

iiii

S | Open. Together.
= p g

.

Open. Together.

i
s

$$¢ 7\:" "za& N e 0 I
AN
Z v s REGIONAL
o A ch N=¢¢ » &
] - R “y¢ v [3
s = AL SUMMIT
= P AR

(

¢¢¢¢¢

Backup Slides

Challenge 1: Data Layout

Ali] = B[i]

Address
Translation

Address
Mapping
(ADM)

User
Program

Logical Address

o

Y
Memory
Controller

l DRAM Address

A"
7 4w:x¢
« OCP
: :1¢ REGIONAL
¥ «
st SUMMIT

Physical Address

PFN Page Offset
A0, L\ MDD
V L/ U
| DRAM Address
ROW RK| BK BG COL [CHBG| COL Offset
CHO, RKO CH1, RKO

Physical Address

I |

P O

CHO, RK1

CH1, RK1

>
O
<
M
c
S
(@)
=,
®)
>

1noAe] eleq

Open. Together.

Challenge 2: MC State Tracking

Invisible to host MC

/‘

@cycle x Host MC NDAO MC > MO Open Bank 1, Row 54

* NDA1 MC > M1 Read Bank 7, Row 12

Tracks incoming host commands

@cyclex + a

\ 4

Host MC NDAO MC > MO Host MC doesn’t know bank & timing state of MO

NDA1 MC > M1 Close Bank 7 after B cycles

‘‘‘‘‘‘‘

Taeulre
R
o

2 neciou . Open. Together.
: = P g

NDA Workloads in SVRG

* Linear algebra kernels
* Streaming access pattern
* Element-wise operations
 Deterministic execution flow

Operations Description Operations Description
AXPBY Z=ax+ By DOT c=Xxy
AXPBYPCZ W =ax+By+yZ NRM2 c=VX-%
AXPY y=ay+x SCAL X=ax
COPY y=x GEMV y =AX
XMY Z=%0¥

Open. Together.

Solution 1: ADM-Aware Frame Coloring

Physical Address

' M B Page Offset B Colored by the OS
S-S SO B Alignment + Same access pattern
DRAM Address
ROW RK| BK BG| COL [CHBG| COL Offset
CHO, RKO CH1, RKO

I |
| 8o] | B4l * Satisfies NDA locality

No data reorganization
CHO, RK1 CH1, RK1 . No ADM change

Bl] Bl6] |

lllll

CRARY

««««««««

-):e: “ :u:(-
t . ¥
"Nnv‘ _v‘f“
Zi:‘i‘ ~:¢;fk f
ABISTATR
PN /

. Open. Together.

Solution 2: Replicated FSMs

Host Memory Scheduler Host
= a Memory
— | |3DDRAM| |3D DRAM 3D DRAM Controller
Acé% ‘ Dles ’ ‘ D|es eee NDA CTRL IO RKO .State RK14§tate
| (L D (L D NDA
[OgIC |e OgIC le] <8E A Host State NDAO FSM, NDA1 FSM’ Controller
a CMD Info Update - =S .I_ Ot ———————_"— - - WYL
o ‘SD [I)Z)RAM ’ ‘30 DDRAM ol |2 v
4 1es 1es o0 -
: S5 ost MG ﬂ: < NDAO. FSM NDA1. FSM) Update
o || Loglc Dle Loglc Dle] a ost @)
==== oo 2 |[RKO State’ RK1 State’ || ™ Access

To Rank 0 \‘i To Rank 1‘1
(1) Host Access (2) NDA Access

Open. Together.

