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CPU and Near-Data Accelerators
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Near-Data Acceleration

* Normal memory access

- Point of BW reduction
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Near-Data Acceleration

« Normal memory access « Near-data memory access
_~ Point of BW reduction Locate PEs between mux and memory
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High memory BW + Low memory-access energy
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Near-Data Acceleration in Main Memory

* NDAs: accelerators with high memory capacity
* Collaboratively process the same data
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Collaborative processing Example per-rank NDA in high-capacity DRAM
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An Ideal Scenario for CPU-NDA Collaboration

* Two workloads with different requirements

* Latency sensitive - CPU
* Throughput oriented = NDAs

- Sharing large read-only data
* Data replication = expensive
* No coherence required

Any applications that meet above conditions?
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Collaboration Opportunity in SVRG

Proc. | Workload Advantage
CPU | Main training Cache locality
NDA | Summarization | Memory BW
for (outer_loop) { //,/”’ S \l,\ {
|g - Summarize(s,A)r 4—0,9 W\
for (inner_loop) { CPU i 1 Ta ]
a = sample(A) NDA | | NDA | .. | NDA
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Exploiting Concurrent Access in SVRG

5 Epoch g
CPU -

Original algorithm

' H N A H
H ! \ p ! o
H ! \ 4 ! K
i ' \ . 1 N
H ! & / | 4
! 1 1
' 1 1
P 1 1
f 1 1
' 1
1

How often?
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Exploiting Concurrent Access in SVRG

. Epoch g
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One epoch behind
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Training loss - Optimum

Collaboration Results
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* Algorithm: Logistic regression

HO, Epoch (N), Ir=4e-3
--HO, Epoch (N/2), Ir=4e-3
--HO, Epoch (N/4), Ir=5e-3

ACC, Epoch (N), Ir=4e-3
—ACC, Epoch (N/2), Ir=4e-3
—ACC, Epoch (N/4), Ir=5e-3

with I2 regularization
* Dataset: CIFAR1O
- Compare convergence speed

\\‘\‘ —DelayedUpdate, Ir=4e-3

50 100
Time (sec)

* HO: host-only execution

* ACC: accelerating summarization
with NDAs

150 - DelayedUpdate: concurrent host-
NDA execution
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Main Challenges for Concurrent Access

1. Acommon data layout for the CPU and NDAs

2. Tracking global memory controller (MC) state
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Interleaving Pattern-Aware Memory Allocation

S
CHO, RKO CH1, RKO

Row y | B[6] |

CHO, RK1 CH1, RK1

ECH ETR

Open. Together.



Interleaving Pattern-Aware Memory Allocation

For A[i] += BJi], Naive Layout Proposed Layout

CHO, RKO CH1, RKO . CHO, RKO CH1, RKO

Row y EEE EGE - IECH EUH
CHO, RK1 CH1, RK1 CHO, RK1 CH1, RK1
EUH _ B[6] |

Address interleaving (for CPU) + Rank locality (for NDAs)

lllll

ddddd

EQE ,. Open. Together.
A = P g




Problem of Uncoordinated MCs

Invisible to host MC

/.

@cycle x Host MC NDAO MC MO Open Bank 1, Row 54

* NDA1 MC > M1 Read Bank 7, Row 12

Tracks incoming host commands
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Problem of Uncoordinated MCs

Invisible to host MC

/‘

@cycle x Host MC NDAO MC > MO Open Bank 1, Row 54

* NDA1 MC > M1 Read Bank 7, Row 12

Tracks incoming host commands

@cyclex + a

Host MC » NDAO MC > MO Host MC doesn’t know bank & timing state of MO

NDA1 MC > M1 Close Bank 7 after B cycles
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Replicated FSMs

Host Memory Scheduler Host
+ a Memory
2 [ RKO State RK1 State | | Controfler
[ ZAY
NDA
NDAO FSM’ NDA1 FSM’ Controller
_______ ..____________________________
< NDAO FSM NDA1 FSM ) Update
a [ I 2 A
= || RKo State’ RK1 State’ coess

To Rank 0 “i To Rank 1‘1
(1) Host Access (2) NDA Access
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Standardizing Concurrent Access

» Standardize address mapping interface
for concurrently accessible data layout

» Standardize NDA operations
for low-cost MC state tracking
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Concurrent Access to Different Data™

» Main direction: avoiding/mitigating contention
* Fine-grained access interleaving
» Coarse-grained NDA operations
* Partitioning into CPU-only and shared memory regions
- Mitigating write/read turnaround penalties with NDA write throttling

*CHoNDA: Near Data Acceleration with Concurrent Host Access (arXiv 2019)
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Conclusion

* Opportunity: Collaborative CPU-NDA execution for shared data
- Potential benefit: 2x faster convergence speed in the SVRG case study
* Challenges

» A common data layout for concurrent access
* Tracking global memory controller state

» Solutions
* Interleaving pattern-aware memory allocation
* Replicated FSMs

* And more...
* Concurrent access to different data
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Challenge 1: Data Layout

Ali] = B[i]
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Challenge 2: MC State Tracking

Invisible to host MC
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@cycle x Host MC NDAO MC > MO Open Bank 1, Row 54

* NDA1 MC > M1 Read Bank 7, Row 12

Tracks incoming host commands

@cyclex + a

\ 4

Host MC NDAO MC > MO Host MC doesn’t know bank & timing state of MO

NDA1 MC > M1 Close Bank 7 after B cycles
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NDA Workloads in SVRG

* Linear algebra kernels
* Streaming access pattern
* Element-wise operations
 Deterministic execution flow

Operations Description Operations  Description
AXPBY Z=ax+ By DOT c=Xxy
AXPBYPCZ W =ax+By+yZ NRM2 c=VX-%
AXPY y=ay+x SCAL X=ax
COPY y=x GEMV y =AX
XMY Z=%0¥
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Solution 1: ADM-Aware Frame Coloring

Physical Address

' M B Page Offset B Colored by the OS
S-S SO B Alignment + Same access pattern
DRAM Address
ROW RK| BK BG| COL [CHBG| COL Offset
CHO, RKO CH1, RKO

I |
| 8o] | B4l * Satisfies NDA locality

No data reorganization
CHO, RK1 CH1, RK1 . No ADM change
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Solution 2: Replicated FSMs

Host Memory Scheduler Host
= a Memory
— | |3DDRAM| |3D DRAM 3D DRAM Controller
Acé% ‘ Dles ’ ‘ D|es eee NDA CTRL IO RKO .State RK14§tate
| (L D (L D NDA
[ OgIC |e OgIC le] <8E A Host State NDAO FSM, NDA1 FSM’ Controller
a CMD Info Update - =S .I_ Ot ———————_"— - - WYL
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To Rank 0 \‘i To Rank 1‘1
(1) Host Access (2) NDA Access
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