Deep Dive
OCP Software Projects

Rajeev Sharma | Director, Software & Technologies
rajeev@opencompute.org
25th June, 2019
OCP Projects and Sub-projects

NETWORKING
ONL, ONIE, SAI, SONiC

RACK & POWER
Adv cooling Solutions
Power Shelf Interoperability
OpenRack V3

STORAGE
Archival
Cloud Fast Fail
API

SERVER
PCI 3.0 MEZZ
Open Domain Specific Architecture (ODSA)
OCP Accelerator Infrastructure (OAI)

DC Facility
Modular DC

HPC

TELCO
OpenEdge

SECURITY

Open Sys FW

HW MGMT
OpenRMC

Project Zipline
Open System Firmware
Open System Firmware

- Where does System Firmware reside in a typical Cloud/Rack?
Need for OSF to be Open!!

- “Closed” System firmware
- Different Silicon vendors have their own version of boot flows.
- No one has single implementation
- Current firmware dev model not been able to keep pace with multiple cloud HW vendors.
Open System Firmware Activities

- Major Companies contributing to the OSF development
 - Microsoft
 - Intel
 - Google
 - Facebook
 - Lenovo
 - IBM
 - Two Sigma
 - ITRenew
 - 9 Elements
 - Cavium
 - AMD
 - ... and many more

GitHub Repositories Collateral link
https://github.com/opencomputeproject/OSF

- Bi-weekly OSF discussions
 - Architectural reviews
 - Workstream progress
 - Design reviews
 - Agenda setting
 - Miscellaneous collaborative discussions
Open RMC
Rack Manager Controller
Motivation from System Firmware (BIOS) and BMC Firmware

Needed to work on Rack Manager
- OCP is designing Rack and Power
- Not just the compute manager but a Rack level Manager

The Rack Manager will run-
- Firmware
- Software
OCP Data Traffic Interfaces

A piece of hardware that provides Rack Management Functions

- OpenRMC Rack Manager
 - Redfish
 - Swordfish
 - SSH
 - Legacy REST
 - Web GUI

Device bound
 - Compute node
 - Storage Node
 - GPU

Orchestration Software

Fabric bound

Data Center Information System
OpenRMC proposed configurations

OpenRack

EIA, OpenRack

Olympus
Common MSFT Build Process
Inspur Firmware Stack

Application
- RSD-RMM
- Multi-Node OS Deployment

IPC
- D-Bus

Runtime Library
- DB(Sensor/Log...)
- HW Mgmt(Power/Fan/Flash...)

BSP
- UART
- SPI
- I2C
- GPIO
- USB
- VGA
- ADC

Hardware
- Ast 2400/2500 (ARM Core, DDR, MAC, Flash, GPIO, I2C...)
- Board/(FAN, PSU, Temper Sensor...)

Resource Aggregation
Resource Allocation
FW Batch Update
Web UI
Redfish
Multi Rack Support
Stateless Computing

Community Component
Inspur Plan for future

Inspect the image for more details.
Open Networking Software

ONIE
SAI
SONiC
OCP Networking Projects

ONIE
- Open NW Install Env
 - Provides an OS install environment
 - Makes writing and running installers easier
 - It is a small Linux based OS itself
 - https://github.com/opencomputeproject/onie

SAI
- Switch Abstraction Interface
 - Provides the standardized C APIs to program the ASIC
 - ASIC is a microchip designed for a particular application
 - https://github.com/opencomputeproject/SAI
Software for Open Networking in Cloud

- Built on SAI
- Breaks monolithic switching software into containerized components
- Enables failure recovery and upgrades with zero downtime.
- Based on 4 Principals: Control, Extensibility, Agility, and Collaboration
- https://github.com/Azure/SONiC

Open Network Linux

- Linux distribution for bare metal switches
- NOS that ONIE would install
- Think of it as a collection of software packages, utilities, and drivers that is run on OCP
- https://github.com/opencomputeproject/OpenNetworkLinux
Project Zipline
OCP Project Zipline

Why Project Zipline
Continuous Data Drives the need

Data Growth Projections

IDC predicts Global DataSphere will grow from 33 Zettabytes (ZB) in 2018 to 175 ZB by 2025.

Figure 1: Annual size of the Global DataSphere
OCP Project Zipline...Cont’d

• Targeted for legacy and modern data sets
 – Covering usage scenarios from Edge to Cloud

• Full solution stack Implementation
 – Algorithms + Software + Hardware

• Compression without compromise
 – Always-on data processing enabled by trifecta of high compression ratios + high throughout + low latency
OCP Zipline Compression gains

Data Sets

- Cloud Data Set #1
 - Uncompressed: 100%
 - Zipline: 8%

- Cloud Data Set #2
 - Uncompressed: 100%
 - Zipline: 5%

- Cloud Data Set #3
 - Uncompressed: 100%
 - Zipline: 4%

Application Service Logs
IoT Text Files
System Logs
OCP Project Zipline...Cont’d

- Compression algorithm and specifications
 - Interoperability across endpoints (edge to cloud)
- Hardware architecture specifications
 - High bandwidth, Low latency implementation
- Verilog RTL source code and test suite
 - Open sourced IP – Industry first for OCP contributions
 - Enabling faster adoption in the silicon ecosystem
OCP Zipline...Cont’d

Use Cases
- Network Data Processing
- IoT
- Storage Archival Systems
- Productivity Applications
- Smart SSD’s
- Analytics
- Cloud Migration Appliances
- General purpose Microprocessors
- Database accelerators

Partners
- CPU
 - Intel, AMD, ARM, MARVELL and SiFive
- Network
 - Broadcom, FUNGIBLE, Mellanox
- Storage
 - EIDETICOM, NGD Systems, PureStorage
- EDA
 - Cadence, Synopsys
Thank you