# Xilinx Chip-to-chip Interface

Millind Mittal



© Copyright 2019 Xilinx

## **Xilinx Chip to Chip Interconnect History**

> Multiple FPGA Dies Integration (Virtex-7 2000T)

Four homogeneous 28nm FPGA Dies over Interposer
10000s of signals system-synchronous interconnect
Announced: 2011

## > Multiple FPGA & SerDes Chiplets (Virtex-7 H870T)

- >> Up to three FPGA and two 28G SerDes Chiplets
- >> 10000s of signals system-synchronous interconnect

>> Announced: 2012

### > Multiple FPGA & HBM Dies (Virtex US+ VU3xP)

- >> Up to three FPGA and two HBM2 Chiplets
- >> 10000s of signals system-synchronous interconnect
- >> 2x HBM2 DDR interconnect (~3500 interface signals)
- >> Announced: 2017





## **Chip-to-chip Interconnect echo-system Motivation**

#### > Integration

- >> Dis-similar process technologies with high BW interface need
- Cost effective new class of solutions with higher BW between modules from different vendors
- >> Lower latency, lower power
- Smaller Form factor
- >> E.g., CPU ←→FPGA/GPU/ASIC and HBM;

FPGA  $\leftarrow \rightarrow$  HBM, Processor SoC, ASICs, Optical modules

## > Disaggregation of Monolithic Die into Chiplets

- >> Different functions separated into modular chiplets for re-use
- Initially may be done in the context of one company design decision still highly desirable to be based on interoperable eco-system driven standard
- >> 3<sup>rd</sup> Party chipset eco-system develops over time.
- >> E.g., FPGA  $\leftarrow \rightarrow$  CPU & Domain-specific functions chiplets

Creating a broad adoption chip-let interface standard requires careful evaluation to avoid fragmentation



## **Use Cases**

|                                                                                  | Eg. chip-lets                       | BW                               | Substrate                |
|----------------------------------------------------------------------------------|-------------------------------------|----------------------------------|--------------------------|
| Memory dies                                                                      | HBM                                 | High (4Tb+/sec)                  | Interposer               |
| Streaming interface                                                              | ADCs, optical modules               | Medium to high BW<br>(2-4Tb/sec) | Organic or<br>Interposer |
| Accelerators<br>(including<br>accelerators with bi-<br>directional<br>coherency) | Security, data base processing, HPC | Medium (0.5Gb/sec-<br>2Tb/sec)   | Organic                  |
| IO Devices                                                                       | PIM; storage , NIC                  | Low to medium                    | Organic                  |

Ideal to have minimum standard interfaces that can scale and provide <u>multiple solutions</u> creation from same central die





## **Standardization Effort Directions- PHY**

#### > Serial

>> XSR – 56G, 112G

#### > Parallel

- >> Expand use of HBM real-estate and design HBM  $\rightarrow$  HBI
- >> What is HBI ?
  - <u>Minimally</u> enhanced HBM compatible Interface for chip-2-chip ; HBM → HBI
    - Interface definition from the perspective of signaling, clocking, voltage ranges, driver characteristics
    - Move to lower voltage in next gen (HBM3 is 0.4v)
    - Additional architected speeds

Parallel interface is suitable for optimally carrying over both inter-poser and organic substrate

#### >> Realization of HBI - HBI is realized in two ways

- HBI-int (HBI over inter-poser) -
  - Bump map consistent with HBM bump-map
  - Target freq spec
  - .....
- HBI-O (inter-operation of HBI-O with BoW for organic package)
  - Bump map
  - Terminate optionally
  - Number of layers assumed for routing
  - Target freq spec
  - .....



# Standardization Effort Directions- DataLink and Protocol





- > Creating a broad adoption chiplet interface standard requires careful evaluation to avoid fragmentation
- Ideal to have minimum standard interfaces that can scale and provide <u>multiple solutions</u> creation from same central die
- > Serdes interface XSR/USR for medium to high performance
- > Parallel- Low to medium performance based on C4 establish HBI-O and its inter-operation with BoW
  - >> Channel definition and IO analysis
    - Target frequencies
    - Max traces within two package layers for routing
    - Trace length
  - >> Example C4 bump map for
  - >> Power
- > Parallel high performance can be over fine-pitch HBI-int (HBI over interposer) as ODSA standard?
- > Convergence on Datalink layer for serial and parallel

**EXILINX** 

# **Chip-to-Chip Landscape**



© Copyright 2019 Xilinx