Stochastic Loss Model and Performance Limits for Differential Power Processing

Motivation

- **Power Delivery Architecture in Data Center**
 - Rack
 - 48V/400V AC
 - UPS
 - 48V
 - 48V - 1V
 - DC/DC
 - 48V - 5V
 - HDD Array
 - Communication Infrastructure
 - CPU/GPU

Stochastic Model and Scaling Factor of Differential Power Processing for Hard Disk Drive Servers

A Very-Large-Scale HDD Array Supported by DPP Converter

- Uniform voltage rating with similar power consumption
- Major power directly delivered to HDDs
- Very little differential power processed by the DPP converter
- Highly scalable to ultra-large-scale array

MAC-DPP Prototype

- **450 W 10-Port MAC-DPP**
 - #10
 - #9
 - #8
 - #7
 - #6
 - #5
- **Stacked PCB Planar Magnetics**
 - 10x magnetics size reduction
 - Magnetic Core (1.8 cm × 1 cm)
 - Main Power Board (Thickness: 0.4 mm)
 - Bottom Cover (Thickness: 1.2 mm)

HDD Server Testbench & Experimental Results

- **50-HDD Storage Server**
 - Efficiency Measurement
 - Port-to-Port Efficiency
 - System Efficiency
 - Peak efficiency: 95% @ (14 W, 5 Ports to 5 Ports)
 - Over 99% system efficiency at most of operation points
 - Transient Response
 - Hot-Swapping
 - 6 A Step Load Transient

Performance Specifications

- System Efficiency: >99% at most of operation points
- Volume: 0.71 in³
- Power Density: 38.6 kW/L (System Power)
 - 19.3 kW/L (Processed Power)

The authors would like to thank the DOE ARPA-E CIRCUIT program for supporting this work.