
AVLSI

Using chiplets to enable a firmware app store

Rajit Manohar 
Asynchronous VLSI and Architecture Group

Computer Systems Lab

Yale University

https://avlsi.csl.yale.edu/

AVLSI

What might an “app store” for firmware look like?

It should look the same….

AVLSI

Some requirements

• Instant gratification

❖ Download update over the network and immediately see the benefit
‣ Reconfigurable accelerator, like an FPGA 

• “30 day free trial”

❖ Security mechanism needed 

• Software support

❖ Existing applications should be “upgradable”

❖ Enable software developers to create accelerators

‣ US hardware engineers (US): ~65K*

‣ US software engineers (US): ~ 1.48M (> 22x)

*Source: US Bureau of Labor Statistics

AVLSI

Completed project: processor-FPGA integration

• Tight integration permits…

❖ Greater opportunities for acceleration thanks to

reduced latency

❖ Leveraging the combination of FPGA strengths and

CPU strengths

• FPGA features

❖ Configuration protected via CPU protection

mechanisms, permits multi-programmed workloads

❖ Runtime fine-grained reconfiguration supported

❖ Polling and interrupt-based interface to the host

(clocked) CPU

‣ NULL accelerator (loopback) latency < 10 cycles

Asynchronous FPGA
fabric (65nm) ~2012

AVLSI

How does the software work?

• Defined a set of “FPGA calling conventions”

❖ Analogous to assembly language calling conventions in software

❖ FPGA access ports (dedicated interface hardware)

• Stub functions + firmware management and scheduling

❖ Lots of details in getting this to work properly…

Software
implementation

of function f

Hardware
implementation

of function f

Access
ports for f

Accelerate
f?

Use FPGA
calling

convention

Use assembly
calling

convention

Y N

AVLSI

How do we map software to hardware?

• Current project: mapping unmodified software to
asynchronous circuits 
(“High Level Synthesis” or HLS)

• Our approach

❖ Map programs into dataflow graphs

❖ Translate dataflow components directly into

asynchronous hardware

❖ Note: standard HLS tools use state-machine +

allocation, scheduling, binding

• Why asynchronous hardware?

❖ Enable incremental improvement of the hardware

❖ Closer match to software cost models

AVLSI

Fluid: an asynchronous HLS framework

• Implementation using LLVM compiler framework

❖ C/C++ to dataflow graph to asynchronous hardware

❖ Comparison against academic state-of-the-art HLS tools + commercial HLS

tools

• Results

❖ Raw translation is poor (reported by previous papers as well)

❖ Translation + dataflow optimizations lead to significant improvements

Academic Commercial

Area 1.19x higher 1.95x higher

Energy 8x lower 3.58x lower

Latency 1.6x lower 1.15x higher*

Throughput 2.5x higher 1.34x higher

*due to one outlier benchmark

AVLSI

Off-the-shelf FPGA prototyping

• Many of the techniques required asynchronous logic

❖ … unsupported by commercial EDA flows

• Tool developments

❖ Open-source asynchronous hardware description language  

❖ Automated translation to synthesizable, vendor-neutral Verilog model for FPGA
prototyping

‣ Current results: 15x-30x slowdown compared to ASIC in a similar feature

size, if design fits on a single FPGA

• Next steps

❖ Use a standard processor (RISC-V) to create a complete prototype system

https://github.com/asyncvlsi/act/

AVLSI

Summary and acknowledgments

• A firmware app store is possible!

❖ Tight coupling between high-quality CPUs and high-quality FPGAs is needed

❖ Chiplets with tight FPGA/CPU integration are an enabling technology

❖ More work is needed on pure software acceleration, rather than “Verilog written

in C/C++”

• Thanks to my current and former students

❖ John Teifel (early dataflow synthesis + FPGA)

❖ Song Peng, David Fang (early dataflow synthesis)

❖ Benjamin Hill (FPGA/CPU integration)

❖ Rui Li (Fluid) 

• Sponsors: AFRL, DARPA

