
An Auto generated test framework for 
improving SAI interoperability



An Auto generated test framework 
for improving SAI interoperability

Ravi Vantipalli, Sr. SW Engineer, Intel
Rita Hui, Principal SW Engg. Manager, Microsoft

Networking



NETWORKING

Agenda
• Motivation
• Goals
• State of SAI testing
• Thrift auto-generation framework
• PTF tests
• Call to Action



NETWORKING

Motivation
SAI

• Vendor agnostic 
API with over 50 
objects and 
1000+ attributes

Functional 
Definition

• Lack of 
examples on API 
usage

• Scope for 
ambiguities in 
API attribute 
functionality

Quality

• Non uniform 
test coverage

• Lack of 
standard tests 
for a common 
bar for all 
vendors

Updates

• Lack of 
workflow for 
adding new 
tests for 
change/updates 
to SAI

• Can result in 
poor quality / 
disparity in SAI 
implementation



NETWORKING

Goals

• Publish a unit and functional test plan for most SAI objects
• Increase SAI testing with a goal towards achieving a high and uniform bar 

for vendor implementations
• Provide a pseudo control-plane using SAI RPC (also auto-generated)

Quality

• Provide and fast and easily understood wrapper to invoke and test any 
libSAI implementation

• Simplify the effort it takes to add new tests going forward

Extensibility



NETWORKING

State of SAI API Testing

Directory Contents Status

basic_router Simple test to illustrate L3 route 
setup

not been updated in over 3 years

sai_ut C++ unit tests for L2/L3 objects 
using google-test

not been updated in over 3 years

saithrift PTF based functional tests for 
L2, L3, Tunnel and Mirror
As of today, ~125 testcases 
present in “saithrift”

updates are very few and far 
between



NETWORKING

Anatomy of a PTF test

PTF Server DUT

•saivlan.pyUnit 
test

•sai_adapter.pyPython 
Helper

• Vendor SAI 
implementationlibsai

• sai_rpc_server.cpp
• sai.thrift

RPC 
Server



NETWORKING

Current: To add a new test

We believe this is 
an impediment to 
writing more tests

Add an entry 
in switch_sai.thrift

sai_thrift_object_id_t

sai_thrift_create_debug_counter(1: list<
sai_thrift_attribute_t> thrift_attr_list
);

Add RPC server method for 
new entry in 

switch_sai_rpc_server.cpp
sai_thrift_object_id_t

sai_thrift_create_debug_counter(

const std::vector<sai_thrift_attribute_t> 
& thrift_attr_list)

{

<function body>
}

Add a python wrapper in 
switch.py (if applicable)Write the new test



NETWORKING

Proposed: To add a new test
• sai.thrift

sai_thrift_object_id_t sai_thrift_create_switch(1: list<sai_thrift_attribute_t> attr_list);
sai_thrift_status_t sai_thrift_remove_switch();
sai_thrift_status_t sai_thrift_set_switch_attribute(1: sai_thrift_attribute_t attr);
sai_thrift_attribute_list_t sai_thrift_get_switch_attribute(1: sai_thrift_attribute_list_t a

ttr_list);

• sai_rpc_server.cpp
C++ thrift backend implementation for above thrift APIs are auto-generated

• sai_adapter.py
Python wrapper for above thrift APIs, compliant to SAI CRUD semantics

• All the above files auto-generated and readily available for every new 
object and attribute

• Just write the test



NETWORKING

SAI Thrift Generation

SAI Meta

• Utilize existing SAI meta to collect information about object/attributes
• Extend SAI Meta perl scripts to auto-generate wrapper files

Code 
Generation

• Provide new template files for auto-code generation
• New extended perl script + template files output .thrift, C++ wrapper + python thrift 

interface

Test 
Creation

• Write new tests using Auto-generated code
• Primary focus on tests rather than on boiler-plate code
• SAI Object definition/update need regeneration allows quick addition/update of 

tests



NETWORKING

SAI PTF Tests

•Python based framework for 
unit and function testing

•SONiC community tests 
extensively using PTF

PTF

•~1000 documented 
functional testcases for SAI

•CRUD UTs for all supported 
objects and their attributes

•Generated using auto-
generated thrift APIs

SAI Tests •Help describe API usage 
with 100s of examples

•Coverage for all supported 
objects

•Extensible 

SAI PTF 
Tests



NETWORKING

SAI PTF Tests
• The test cases include
• - CRUD unit tests
• - Functional tests

• The functional tests conform to SAI behavior model
• Allow for different implementations to have a consensus on API 

behavior
• Decrease cases of ambiguity for a given API
• Establish a common bar of quality for all SAI implementations



NETWORKING

SONiC Community Tests
• All of these tests can run in a SONiC community test environment
• Build the libsaithrift using ENABLE_RPC functionality in SONiC
• Work in progress to define a community test topology to run new 

tests
• More details will be published soon



Call to Action
• We invite all vendors and partners to review and contribute testcases
• Help us review the design of the thrift wrapper
• Help is review the test cases
• Start adding your own PTF tests



Thank you!



Open Discussion


