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Motivation
SAI

• Vendor agnostic 
API with over 50 
objects and 
1000+ attributes

Functional 
Definition

• Lack of 
examples on API 
usage

• Scope for 
ambiguities in 
API attribute 
functionality

Quality

• Non uniform 
test coverage

• Lack of 
standard tests 
for a common 
bar for all 
vendors

Updates

• Lack of 
workflow for 
adding new 
tests for 
change/updates 
to SAI

• Can result in 
poor quality / 
disparity in SAI 
implementation
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Goals

• Publish a unit and functional test plan for most SAI objects
• Increase SAI testing with a goal towards achieving a high and uniform bar 

for vendor implementations
• Provide a pseudo control-plane using SAI RPC (also auto-generated)

Quality

• Provide and fast and easily understood wrapper to invoke and test any 
libSAI implementation

• Simplify the effort it takes to add new tests going forward

Extensibility
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State of SAI API Testing

Directory Contents Status

basic_router Simple test to illustrate L3 route 
setup

not been updated in over 3 years

sai_ut C++ unit tests for L2/L3 objects 
using google-test

not been updated in over 3 years

saithrift PTF based functional tests for 
L2, L3, Tunnel and Mirror
As of today, ~125 testcases 
present in “saithrift”

updates are very few and far 
between
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Anatomy of a PTF test

PTF Server DUT

•saivlan.pyUnit 
test

•sai_adapter.pyPython 
Helper

• Vendor SAI 
implementationlibsai

• sai_rpc_server.cpp
• sai.thrift

RPC 
Server
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Current: To add a new test

We believe this is 
an impediment to 
writing more tests

Add an entry 
in switch_sai.thrift

sai_thrift_object_id_t

sai_thrift_create_debug_counter(1: list<
sai_thrift_attribute_t> thrift_attr_list
);

Add RPC server method for 
new entry in 

switch_sai_rpc_server.cpp
sai_thrift_object_id_t

sai_thrift_create_debug_counter(

const std::vector<sai_thrift_attribute_t> 
& thrift_attr_list)

{

<function body>
}

Add a python wrapper in 
switch.py (if applicable)Write the new test
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Proposed: To add a new test
• sai.thrift

sai_thrift_object_id_t sai_thrift_create_switch(1: list<sai_thrift_attribute_t> attr_list);
sai_thrift_status_t sai_thrift_remove_switch();
sai_thrift_status_t sai_thrift_set_switch_attribute(1: sai_thrift_attribute_t attr);
sai_thrift_attribute_list_t sai_thrift_get_switch_attribute(1: sai_thrift_attribute_list_t a

ttr_list);

• sai_rpc_server.cpp
C++ thrift backend implementation for above thrift APIs are auto-generated

• sai_adapter.py
Python wrapper for above thrift APIs, compliant to SAI CRUD semantics

• All the above files auto-generated and readily available for every new 
object and attribute

• Just write the test
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SAI Thrift Generation

SAI Meta

• Utilize existing SAI meta to collect information about object/attributes
• Extend SAI Meta perl scripts to auto-generate wrapper files

Code 
Generation

• Provide new template files for auto-code generation
• New extended perl script + template files output .thrift, C++ wrapper + python thrift 

interface

Test 
Creation

• Write new tests using Auto-generated code
• Primary focus on tests rather than on boiler-plate code
• SAI Object definition/update need regeneration allows quick addition/update of 

tests
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SAI PTF Tests

•Python based framework for 
unit and function testing

•SONiC community tests 
extensively using PTF

PTF

•~1000 documented 
functional testcases for SAI

•CRUD UTs for all supported 
objects and their attributes

•Generated using auto-
generated thrift APIs

SAI Tests •Help describe API usage 
with 100s of examples

•Coverage for all supported 
objects

•Extensible 

SAI PTF 
Tests
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SAI PTF Tests
• The test cases include
• - CRUD unit tests
• - Functional tests

• The functional tests conform to SAI behavior model
• Allow for different implementations to have a consensus on API 

behavior
• Decrease cases of ambiguity for a given API
• Establish a common bar of quality for all SAI implementations
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SONiC Community Tests
• All of these tests can run in a SONiC community test environment
• Build the libsaithrift using ENABLE_RPC functionality in SONiC
• Work in progress to define a community test topology to run new 

tests
• More details will be published soon



Call to Action
• We invite all vendors and partners to review and contribute testcases
• Help us review the design of the thrift wrapper
• Help is review the test cases
• Start adding your own PTF tests



Thank you!
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