Open. Together.

Misha Smelyanskiy

Director, Al System Software/Hardware, Facebook

facebook

Challenges and Opportunities of Architecting AI Systems at Datacenter Scale

Misha Smelyanskiy Director, AI Systems Co-Design — Facebook

Open. Together.

Deep Learning

Programs with ability to learn and reason like humans

Set of statistical techniques that enable machines to improve with experience

Multi-layer neural networks which adapt and learn from vast amounts of data

Due to deep learning success some equate it to ML and even Al

The World According to Deep Learning

Increase of the term "deep learning" in research

Increase of the term "deep learning" in research

Deep Learning is Unique

Data & Model Complexity / Hardware Resources

Facebook Example

ML Growth and Scale at Facebook

ML data growth

- Usage in 2018: 30%
- Usage today: 50%
- Growth in one year: 3X

1-year Training growth

- Ranking engineers: 2X
- Workflows trained: 3X
- Compute consumed: **3X**

Inference Scale per Day

- # of predictions: 200T
- # of translations: 6.5B
- Fake accounts removed: 99%

Infrastructure Challenges

- Strains compute, memory, storage, and network
- Speed of innovation requires high-performance and flexibility

"No Exponential is Forever"

'The important thing is that Moore's Law is exponential, and no exponential is forever... But we can delay forever' – Gordon Moore

- Data & Model Complexity → Hardware Resources
- Moore's Law has declined!
- Solution: Specialization via HW/SW co-design

What Are The Workloads?

- Ranking and recommendation
 - news feed, and search
- Computer vision
 - image classification, object detection, and video understanding
- Language
 - translation, speech recognition, content understanding
- Recommendation models are among most important models

Deep Learning Recommendation Models

- DL recommendation models help user choose small set of items out of many
- Embedding look-ups result in sparse irregular accesses

It's not all about Matrix Multiplications (MM)

Only ~40% is spent in MM in FB production

→ Should not over-design hardware for MM and convolutions

Skinny MMs due to depth- and group-wise convolutions, small batch, beam search

→ Fewer smaller tensor units is better than few big ones

Memory and Storage

Workload Characteristics

Rec systems are huge; low arithmetic intensity

- Need high capacity, high bandwidth memory
- → Unstructured accesses benefit from caches

CV and language models are smaller

→ Larger on-chip memory helps and gives compiler more flexibility

Network

Interconnect Matters!

Model parallelism

- Different communication patterns
- Needs high bisection bandwidth

Graph learning

- New emerging application
- Need low latency, low diameter

Programmability

It is Not All About Peak Flops

Those of us who build ML HW need to think about SW at scale

What Makes Programmability Easy (Hard)

Programmability Features	Easier To Program	Harder to Program
Concurrency & control	Few cores	Many cores
Computation	Scalar, SIMD	Tensor units
Data Reuse	Caches	SW-controlled SRAM
Communication	Cache coherence	Explicit
Latency Hiding	HW prefetcher	SW prefetch

• Specialization improves energy efficiency but limits programmability

• How do we get the best of both worlds?

Facebook Approach

Yosemite V2 Inference Platform

- Scale-up compute, mem/SRAM capacity & BW: tightly couple via PCIe switch
- Common M.2 module, common compute and memory requirements for vendors
- Community-driven approach to programmability via GLOW compiler

Zion Training Platform

System

- Unified 100s TFLOPs of BFLOAT16
- High capacity DDR, high bandwidth HBM
- High bandwidth disaggregated fabric

Where does flexibility come from?

- OCP Accelerator Module(OAM)
- Incremental SW enablement

See Zion talk on Friday @ 9:30am by Whitney Zhao and Dheevatsa Mudigere

Call to Action

- Moore's Law slow-down requires specialization and co-design
- Need to tackle problems holistically: memory, compute, network, storage
- The Only Constant Is Change: exciting new developments in sparsity, graph learning, unsupervised learning, architecture search, backprop free training, ...
- Performance is a start of the conversation; programmability will keep it alive!
- Our journey is only 1% finished
- Let us work together!

Open. Together.

