

Pipe Adapter for PHY implementation

ODSA Project Workshop

September 10, 2019

Robert Wang Bapi Vinnakota

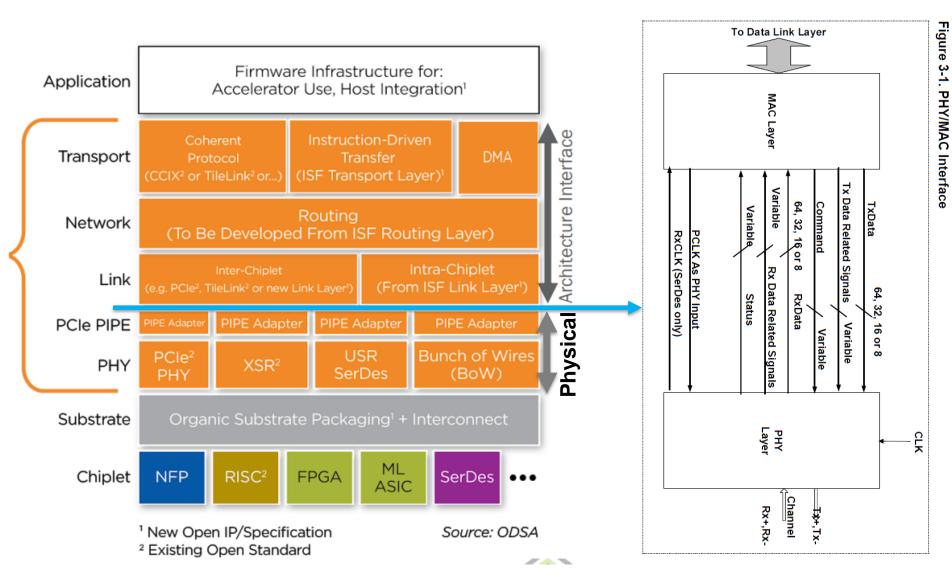
Contributors and Collaborators

- Halil Cirit Facebook
- Ramin Farjad Aquantia
- Brian Holden Kandou Bus
- Rita Horner Synopsys
- David Kehlet Intel
- Mark Kuemerle Global Foundries
- Paul Mattos Global Foundries
- Bapi Vinnakota Netronome
- Robert Wang AnalogX
- Jerrold Wheeler Synopsys

Meeting Summary and Change Notes

Revision	Date	Comment
1.0	8/20/2019	 Added PIPE adapter definition to be more specific on where it is Added compatibility to VIP support Suggested number of PIPE lanes that can be supported
1.1	8/27/2019	 Changed PIPE interface requirement from compatible to compliant Introduced implementation matrix for anyPHY adoption Discussed each of the PHY implementation at high level on what needs to be done
1.2	9/3/2019	 Added the last slide, may need to offer two requirements based on PIPE4.4.1 or PIPE5.2, or just choose 1 of them.
1.3	9/10/2019	 Concluded each case and their respective IO connectivity technology Choosing PIPE5.2, user elects backward compatibility as necessary

References


- ODSA Technical Intro, Bapi Vinnakota, https://146a55aca6f00848c565-a7635525d40ac1c70300198708936b4e.ssl.cf1.rackcdn.com/images/a00b210eaf5d10ee932d1b97c960d4c24f549f2a.pdf
- PIPE Adapters, Brian Holden, https://146a55aca6f00848c565-a7635525d40ac1c70300198708936b4e.ssl.cf1.rackcdn.com/images/abfb1d3954_d95426e5c4485771ae16120e963251.pdf
- Outline of specification of a PIPE adapter for BoW v2.docx, Brian Holden

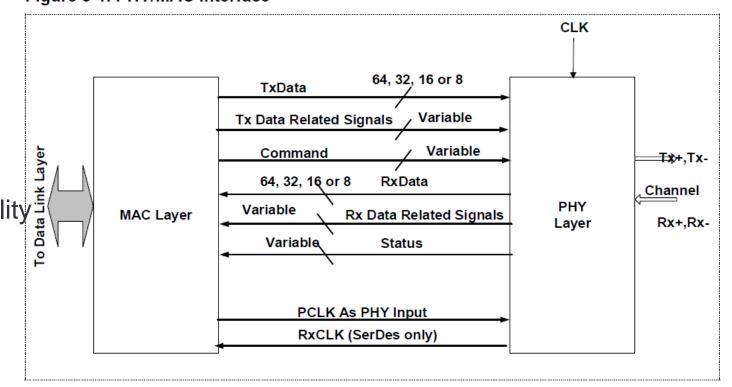
To Address What Questions

- How does a die-die SerDes/PHY use a PIPE interface?
- How does a 112G XSR map to PIPE interface?
- How does a HS (//) IO interface map to PIPE interface?
- What would the general control signal guidelines for the PIPE interface?

Need input from PHY suppliers and MAC Controllers

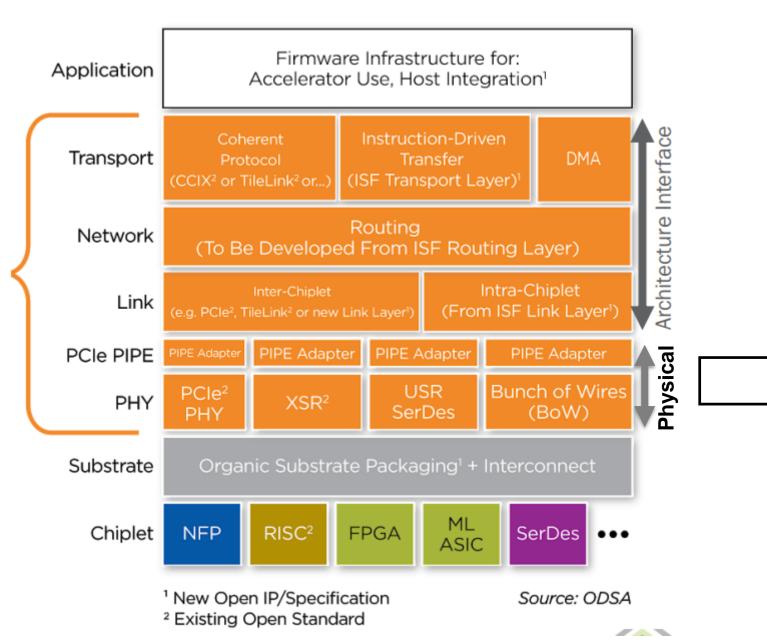
Pipe Adapter (a.k.a. SerDes PCS)

Pipe Adapter


- Is an added PCS logic layer in serdes PHY to support existing PIPE interface
- Follows PIPE • specification (eg. PIPE 5.2 or 4.4.1)
- Implemented by PHY providers to ensure PIPE compliance

Note

Each PIPE adaptor is • different as it is PHY specific


Idea is not new, but an extension

- PIPE supports many different protocol standards with different datarates
 - Namely: PCIe, SATA 3.0, USB 3.1, DP 1.4
 - Also has Converged IO PHY 1.0
- Has support for SR application
- Important to note
 - Not making changes to standards
 - Not proposing changes to PIPE
 - Leverage existing solutions
 - Accelerate adoption and interoperability

Figure 3-1. PHY/MAC Interface

Pipe Adapter Focus

- PIPE interface compatibility
 Compliance
- Verification IP Compatibility
- Can support 1 to M number of PHY lanes
- Can support 1 to N number of lanes on PIPE side (Typical Nmax = 16, can be different)
- Can support predefined PIPE datarates or user defined datarates
- PHY implementation agnostic (anyPHY)
- Guidelines for PHY vendor to implement

Some Definitions

- PHY Lane (M): refer to the number of lanes on the PHY side
- PHY Lane Rate: specify one lane data rate of the PHY. This can be each lane in a serial PHY, or each lane in a parallel PHY
- PHY Link Rate: specifies the total BW of the PHY with 1 to M number of PHY lanes
- PIPE Lane (N): refer to the number of data path on the PIPE interface, each PIPE lane can consist of data bus width defined in PIPE
- PIPE Lane Rate: specify the data rate of 1 Lane PIPE interface
- PIPE Link Rate: specifies the total BW of the PIPE with 1 to N number of PHY Lanes (eg: x1, x8, x16)
- Data width: refers to the per lane data width as per PIPE specification

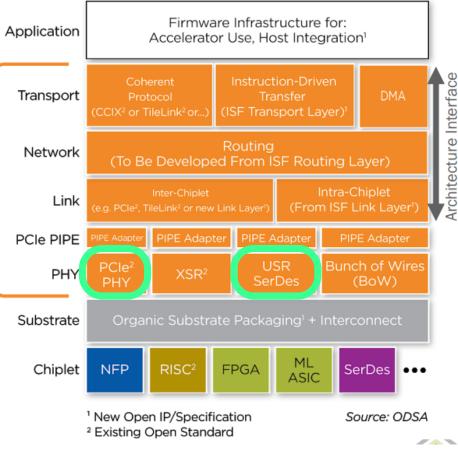
Implementation Matrix

• To accommodate different PHYs

		PHY Lanes (M) vs. PIPE Lanes (N)	
		M = N	M != N
PHY Lane Rate	=	Case A	n/a
vs. PIPE Lane Rate	!=	Case B	Case C

- Goal of the PHY Adapter for chiplet/MCM applications
 - Use the existing PIPE specification to interface different PHY layers

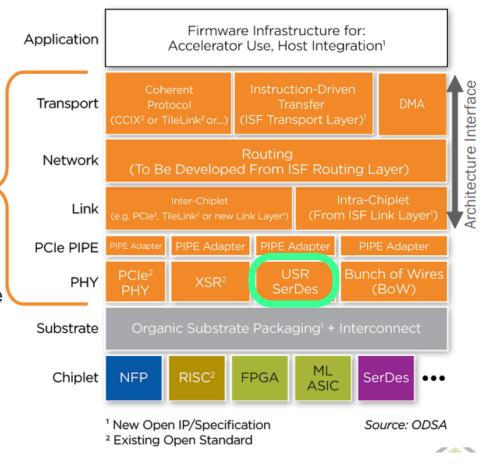
PHY Link Rate	=	PIPE Link Rate
M * PHY Lane Rate	=	N * PIPE Lane Rate


- Coding, FEC can be taken into account, and yes, formula can be more extensive

Case A Condition

		Number of Lanes		
		M = N	M != N	
Lane Datarate	=	Case A	Case D	
	!=	Case B	Case C	

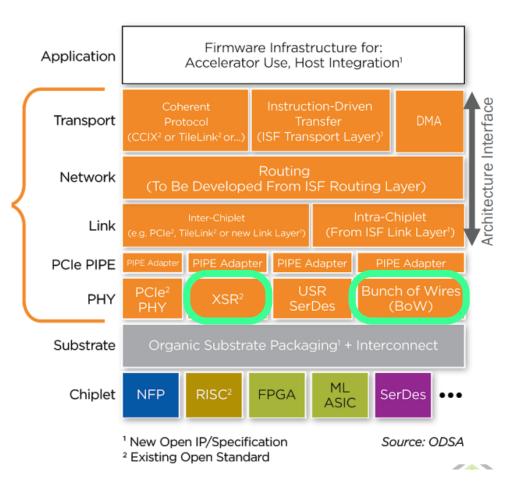
• Example


- Existing PCIe PHY operating at defined data rate and per lane data width (bus width)
- A die to die power optimized SerDes link where lane rates and lanes match PIPE Link rates
- Solution Proposal
 - Use existing PIPE interface solution
 - PHY to use existing PIPE datarates for all implementation
 - No changes are required, completely compliant
 - Suggested pin mapping can be provided in a requirements document

Case B Condition

		Number of Lanes		
		M = N	M != N	
Lane Datarate	=	Case A	Case D	
	!=	Case B	Case C	

- Condition: PHY lane datarate != PIPE lane datarate
- Example
 - SATA operating at less than or equal to PIPE Lane Rate but same number of lanes (using TXDataValid/RXDataValid)
 - AnalogX AXDieIO Serdes to use PIPE interface
- Solution Proposal
 - Use existing PIPE interface solution to match PIPE Lane Rate and PHY Lane Rate (two methods)
 - To run at PHY rate, lower/change suggested PCLK at PIPE interface
 - Can also change PCLK, data width, and TXDataValid/RXDataValid to ensure overall same data rates between MAC and PHY
 - Controller to adopt compatibility with greater set of datarates in addition to outlined in PIPE specification
 - No PIPE interface or MAC changes are required
 - Can also use SerDes Mode in PIPE5.2



Case C Condition

		Number of Lanes		
		M = N	M != N	
Lane	=	Case A	Case D	
Datarate	!=	Case B	Case C	

Example

- 112G XSR operating at single or quad configuration (M = 1 or 4) but need to map to PIPE lane configuration (N = 4 or 16)
- BoW IO connectivity solutions
- Solution Proposal
 - Should be driven by those PHY implementors
 - Use SerDes Mode defined in PIPE 5.2
 - Require customization due to mapping different lanes and rates, but the customization reside in the adapter layer.

Implementation Proposal (WIP)

• Based on existing PCS and MAC definitions, outline implementation details

PIPE 5.2	Case A	Case B	Case C			
MAC/Controller	Follow PIPE 5.2Maybe backwards compatible to PIPE4.4.1	 Follow PIPE 5.2 Implement SERDES mode as per PIPE spec 5.2 Accommodate greater number of PCLK rates 	 Follow PIPE 5.2 Implement SERDES mode as per PIPE spec 5.2 			
	Example MAC/ControllerAny PIPE5.2 or PIPE4.4.1 compliant controller	Example MAC/ControllerAny PIPE5.2 or PIPE4.4.1 compliant controller	Example MAC/ControllerPIPE5.2 compliant controller			
Pipe Interface						
Pipe Adaptor (SerDes PCS)	 Follow PIPE 5.2 Maybe backwards compatible to PIPE4.4.1 and previous PCIe Rates 	 Follow PIPE 5.2 Recommend to use SerDes Mode in PIPE 5.2 Define additional PCLK for each datarates 	Follow PIPE 5.2Use SerDes Mode in PIPE 5.2 only			
	Example PHYsPCIe SerDes or PCIe SR SerDes	Example PHYs AnalogX AXDieIO SerDes 	Example PHYs BoW IOs 112G XSR SerDes 			

Next Step

- Each PHY provider to outline on how their PHY can be connected to publicly available MAC/Controllers via the PIPE interface.
- This can be an application note, a requirements document, or a generic white paper