High-Bandwidth Density, Energy-Efficient, Short-Reach Signaling that Enables Massively Scalable Parallelism

John Wilson Nvidia Research, Durham, NC

Fundamental Motivation

- Energy-cost of communication is a tax on computational performance
- Computational performance ... per Watt ... is the only thing that matters
- □ All systems are limited by power

Goal = Increase Computational Performance Per Watt

Systems of the Future

Energy-Efficient On- & Off-Package Links

Requires several TB/s of bi-section bandwidth to emulate a giant GPU

GRS Links over PC Board between MCM-GPUs

We want to enable massively scalable parallelism

Systems of the Future

GPUs connected via Optical links

- Networking switches interconnect multiple processors for global communication
- To meet BW and energy challenge, chips will be interconnected with optical links

Need low-power ultra-short-reach electrical links

Ultra Short Reach Links on Interposer

What are the Limits to Off-Chip Bandwidth ... ?

□ Let's assume a simple system with a single GPU & DRAM

- Reticle limited GPU (25.6 x 32.6mm) w/ 24.25 x 31.25mm usable
- Both longer sides are for DRAM interfaces
- 2 x 24.25mm available for off-chip communication

Best Known SE Method: 6x6 Checkerboard

- □ Total Off-Chip Bandwidth: Escape using 2 Routing Layers above core
 - Use top & bottom edges of a reticle limited die ...

Metric	Single-Ended Signaling		
Signaling Style	NRZ		
Data Rate	25 Gbps		
Output Mux & Clocks	2:1 @ 12.5 GHz		
Nyquist Freq.	12.5 GHz		
Bump Pitch	130 x 130 um		
Edge Length per Byte	0.78 mm		
Bandwidth Density per Layer 513 Gbps/mm/Laye			
Total Off-Chip BW w/ 2-Layers	49.6 Tbps		

Escapes two wires between bumps

What are the Limits to Off-Package Bandwidth?

- Try to escape from the **bottom** of the package
 - SI Issues: Pkg/PCB core vias & BGA or LGA pins
 - Limited bandwidth: ~1/4 compared to off-chip
 - □ 25Gbps SE Sys: 12.8Tbps (1.6TBps)
 - Package size is at least 55x70mm
 - Still issues to work through ...
 - EPYC Package: 58.5x75.4mm
 - SP3 socket, 4094 LGA

What are the Limits to Off-Package Bandwidth?

- Does a package support 49.6Tbps off-chip BW?
 - Only from top of 55x75.4mm package
 - 25Gbps SE: 8 regions x 6Tbps = 48Tbps
 - "Regions" \rightarrow Interface-pitch to Pkg \leq 300x300um
 - □ Flat flex-cables w/ fine-pitch
 - □ Or each region could be an E-O/O-E
- □ Supporting off-chip bandwidth is difficult
 - Only possible from top of package
 - Electrical solutions: Limited reach & high-power
 - Optical: Promising ... under development

What are the Limits to Interposer Bandwidth?

- Signaling limits: **1-2mm long** silicon interposer wires
 - Information escapes optically using O-E/E-O Interface –

Metric	Single-Ended Signaling		
Signaling Style	NRZ		
Data Rate	25 Gbps		
Output Mux & Clocks	2:1 @ 12.5 GHz		
Nyquist Freq.	12.5 GHz		
Bump Pitch	36 x 36 um		
Total Edge Length	48.5 mm		
Bandwidth Density per Layer	2.08 Tbps/mm/Layer		
Total Off-Chip BW w/ 4-Layers	s 404.2 Tbps		
		G-	

DRAMs

What are the Limits to Off-Package Bandwidth?

High-Bandwidth Density, Energy-Efficient, Short-Reach Signaling that Enables Massively Scalable Parallelism

Ground Referenced Signaling (GRS)

- □ Ground used as Return Path
 - Lowest impedance node and all systems agree on voltage
- Charge-Pump Transmitter consumes constant current (No SSO Noise)
- Employs a Delay-Matched Clock Forwarding Approach
 - All delays in Data & Clock paths, at both Tx & Rx, track across voltage and temperature variations
 - Very high tracking bandwidth and low power

25Gb/s GRS Link Floorplan – 16nm FinFET

x8 GRS Link w/ Bumps (686x565µm)

I/O Transceiver Brick (200x400µm, 16nm FinFET)

High-Bandwidth Density, Energy-Efficient, Short-Reach Signaling that Enables Massively Scalable Parallelism

On-Package ... or ... MCM Channel

10mm MCM Link

Signal Routing

10mm Package Routing (or more)
 LC-Dominated Lines
 40Ω Characteristic Impedance
 On-Chip RDL Routes

Signal Integrity

Limited to stripline routing above core GND planes above & below traces Signal-Ground Checkerboard Pattern

Off-Package ... or ... PCB Channel

Signal Routing

54mm PCB Channels 13mm Package Routing LC-Dominated Lines 40Ω Characteristic Impedance On-Chip RDL Routes

Signal Integrity

Bottom Stripline PCB Routes Signal-Ground Checkerboard Pattern Interleaved GND Traces on PCB

80mm Off-Package PCB Link

MCM & PCB Channel Response

Complete channels models which include: All Circuit, ESD, & Pad Capacitance, 270um on-die RDL trace, T-Coils, and 3D Models for Package/PCB Interconnect

Measured 25Gbps MCM & PCB Link

All 9 lanes operating simultaneously using PRBS-31 with different lanes seeds.

GRS Energy Breakdown: Off-Package (PCB)

1.17pJ/bit

Entire System @ 25GB/s

- 1 Clock & 8 Data Lanes
- 2x PLL
- 2x Regulator
- All clock distribution, etc.

16nm FinFET CMOS Technology 80mm PKG-to-PKG PCB Link

Easily drops to 1pJ/bit for "MCM-only" Link

Silicon Interposers (RC-Dominated Channels)

Keep wire length short!

Fine Resolution Channels (Very High-Density)

On-Chip Upper Metal Layers & Silicon Interposers

$BW_{WIRE} = \frac{1}{2\pi R_{WIRE} C_{WIRE}}$

High Wire Resistance & High-Crosstalk

- Signal BW Limitation
- Requires shielding to reduce crosstalk
- Signal Reflections completely attenuated

BW decreases quadratically w/ wire length C_{WIRE} increases linearly w/ wire length R_{WIRE} increases linearly w/ wire length

Keep wire length very short!

Modulation Scheme Comparison @ 50Gbps

	Pros	Cons
50Gbps NRZ	 Simple Excellent tracking between Data & Clk with Clk forwarding 	 25GHz Nyquist rate: higher loss, reflections & crosstalk High power Small timing margin
50Gbps PAM4 11 10 01 00 40ps	• 12.5GHz Nyquist	 Input w/ analog amp or sampler? Poor Data-Clk tracking Poor Signal-to-Noise ratio Inherent ISI
25Gbps x 2 SBD Tx+Rx 1,1 1,0 0,1 0,0	 12.5GHz Nyquist Wide timing margin Excellent tracking between Data & Clk with Clk forwarding 	 Can be resolved by careful channel design Sensitive to reflections Sensitive to near-end crosstalk (NEXT) Difficult for single-ended CMOS

SBD (Simultaneous Bi-Directional) Signaling

John Wilson

High-Bandwidth Density, Energy-Efficient, Short-Reach Signaling that Enables Massively Scalable Parallelism

Single-Ended Hybrid Design

ISR-SBD PHY Architecture

Enables Massively Scalable Parallelism

ISR-SBD: Delay Matching

High-Bandwidth Density, Energy-Efficient, Short-Reach Signaling that Enables Massively Scalable Parallelism

ISR-SBD: Delay Matching: Temp-drift

Total delay Post-layout Simulation

Test-site Micrograph

□ A test-site on a 5nm production chip under 0.75V core logic supply.

□ Two ISR-SBD PHY instances placed 1.2mm apart

On-chip channel closely emulates a target interposer channel

John Wilson

High-Bandwidth Density, Energy-Efficient, Short-Reach Signaling that Enables Massively Scalable Parallelism

Channel Response

Results at 50.4Gbps/wire

- 25.2Gbps/direction, 50.4Gbps/wire
- Using the slope of BER curves, Rj is calculated as 0.75ps rms.
- Eye Margin@1E-25 is extrapolated as 0.45UI(PHYA) & 0.43UI(PHYB)

Power Consumption at 50.4Gbps/wire

Power Consumption and breakdown for **one side** of a 14-DQ ISR-SBD PHY

Power Consumption 105mW/PHY

Overall Link Energy Efficiency 0.297pJ/bit

Application to Multi-Rank System

72DQ & 8 Clocks on 4 Layers

High-Bandwidth Density, Energy-Efficient, Short-Reach Signaling that Enables Massively Scalable Parallelism

Conclusion

- Energy-Cost of Communication
 - Tax on computational performance ... and it's all that matters
- □ Limitations to Off-Chip & Off-Package Bandwidth
- □ Single-Ended Signaling Methods for Scaling Chip-to-Chip Bandwidth
 - Organic Package (MCM) and PCB Applications using Ground-Referenced Signaling
 - Interposer Short-Reach Signaling using Simultaneous Bidirectional Signaling
- Plenty of room to scale chip-to-chip bandwidth for 2.5D systems
 - Main challenge is reducing power consumption of data movement

References

- J. Poulton, J. Wilson, W. Turner, B. Zimmer, X. Chen, S. Kudva, S. Song, S. Tell, N. Nedovic, W. Zhao, S. Sudhakaran, C. T. Gray, W. Dally, "A 1.17-pJ/bit 25-Gb/s/pin Ground-Referenced Single-Ended Serial Link for Off- and On-Package Communication Using a Process- and Temperature-Adaptive Voltage Regulator", IEEE Journal of Solid-State Circuits, Vol. 54, Issue 1, Digital Object Identifier: 10.1109/JSSC.2018.2875092, Jan. 2018.
- W. Dally, T Gray, J. Poulton, B. Khailany, J. Wilson, L. Dennison, "Hardware-Enabled Artificial Intelligence", Symposium on VLSI Circuits, IEEE, June 18-22, 2018. (Plenary Talk)
- J. Wilson, W. Turner, J. Poulton, B. Zimmer, X. Chen, S. Kudva, S. Song, S. Tell, N. Nedovic, W. Zhao, S. Sudhakaran, C. T. Gray, W. Dally, "A 1.17pJ/bit 25Gb/s/pin Ground Referenced Single-Ended Serial Link for Off- and On-Package Communication in 16nm CMOS Using a Process- and Temperature-Adaptive Voltage Regulator", IEEE International Solid-State Circuits Conference, ISSCC'18, Vol. 61, pp. 276-277, Paper 16.8, Feb. 2018.
- J. Wilson, M. Fojtik, J. Poulton, X. Chen, S. Tell, T. Greer, C. T. Gray, W. Dally, "A 6.5-to-23.3fJ/bit/mm Balanced Charge-Recycling Bus in 16nm FinNET CMOS at 1.7-to-2.6Gb/s/wire with Clock Forwarding and Low-Crosstalk Contraflow Wiring", IEEE International Solid-State Circuits Conference, ISSCC'16, Vol. 59, pp. 156-157, Paper 8.6, 2016.
- J. Poulton, W. Dally, X. Chen, J. Eyles, T. Greer, S. Tell, J. Wilson, C. T. Gray, "A 0.54 pJ/bit 20 Gb/s Ground-Referenced Single-Ended Short-Reach Serial Link in 28nm CMOS for Advanced Packaging Applications", IEEE Journal of Solid-State Circuits, Vol. 48, Issue 12, pp 3206-3218, 2013.
- Y. Nishi, J. Poulton, X. Chen, S. Song, B. Zimmer, W. Turner, S. Tell, N. Nedovic, J. Wilson, W. Dally, C. T. Gray, "A 0.297-pJ/bit 50.4-Gb/s/wire Inverter-Based Short-Reach Simultaneous Bidirectional Transceiver for Die-to-Die Interface in 5nm CMOS", IEEE Symposium on VLSI Circuits, pp. 154-155, June 2022.
- Y-Y. Hsu, P-C. Kuo, C-L. Chuang, P-H. Chang, H-H. Shen, C-F. Chiang, "A 7nm 0.46pJ/bit 20Gbps with BER 1E-25 Die-to-Die Link Using Minimum Intrinsic Auto Alignment and Noise-Immunity Encode", IEEE Symposium on VLSI Circuits, pp. 1-2, June 2021.
- M-S. Lin, T-C. Huang, C-C. Tsai, K-H. Tam, C-H. Hsieh, T. Chen, W-H. Huang, J. Hu, Y-C. Chen, S. K. Goel, C-M. Fu, S. Rusu, C-C. Li, S-Y. Yang, M. Wong, S-C. Yang, F. Lee, "A 7nm 4GHz Arm®-core-based CoWoS® Chiplet Design for High Performance Computing", IEEE Symposium on VLSI Circuits, pp. C28-C29, June 2019.
- B. Dehlaghi, A. C. Carusone, "A 0.3 pJ/bit 20 Gb/s/Wire Parallel Interface for Die-to-Die Communication", IEEE Journal of Solid-State Circuits, vol. 51, no. 11, pp. 2690-2701, Nov. 2016.

Routing Layers & Bump Pitch

Double Number of Routing Layers

- Instant 2x increase in die-edge BW
- Maintain per-channel signal-rates
- Higher cost interposer
- Doubles the I/O bump array height
- Limitations from large vias (InFO or CoWoS-R)

Reduce I/O µBump Pitch

- $\sqrt{2}$ pitch reduction doubles BW density
- Maintain per-channel signal-rates
- Optimum is to improve both µBump and routing pitches
- Area available for PHY becomes a concern along with thermal and power delivery

Comparison

	Our work	Y-Y Hsu VLSI21	M-S Lin VLSI19	B.Dehlaghi JSSC16
Technology	5nm	7nm	7nm	28nm
µbump pitch	55µm*	40µm 🗸	40µm 🗸	100µm
Interposer Channel	1.2mm**	1.0mm	0.5mm	2.5mm 🗸
Supply[V]	0.75 🗸	0.8	0.8,0.3	NA
Data Rate/wire [Gb/s]	50.4 (SBD)	20 (NRZ)	8 (NRZ)	20 (NRZ)
Energy Efficiency [pJ/bit]	0.297	0.46	0.56	0.3***
Areal Density [Tb/s/mm ²]	4.45 🗸	2.25	0.8	NA
Edge Density [Tb/s/mm]	2.14	5.31 🗸	0.67	NA

* Target application ** On-chip replica channel ***Clocking not included

Comparison

	Our work	Y-Y Hsu VLSI21	M-S Lin VLSI19	B.Dehlaghi JSSC16
Technology	5nm	7nm	7nm	28nm
µbump pitch	55µm*	40µm 🖌	40µm 🗸	100µm
Interposer Channel	1.2mm**	1.0mm	0.5mm	2.5mm 🗸
Supply[V]	0.75 🗸	0.8	0.8,0.3	NA
Data Rate/wire [Gb/s]	50.4 (SBD)	20 (NRZ)	8 (NRZ)	20 (NRZ)
Energy Efficiency [pJ/bit]	0.281	0.46	0.56	0.3***
Areal Density [Tb/s/mm ²]	5.73	2.25	0.8	NA
Edge Density [Tb/s/mm]	11.0	5.31	0.67	NA
Edge Density [Tb/s/mm]	2.14	5.31	0.67	NA
* Target application				

* Target application

****** On-chip replica channel

18-DQ, 4-rank extrapolation