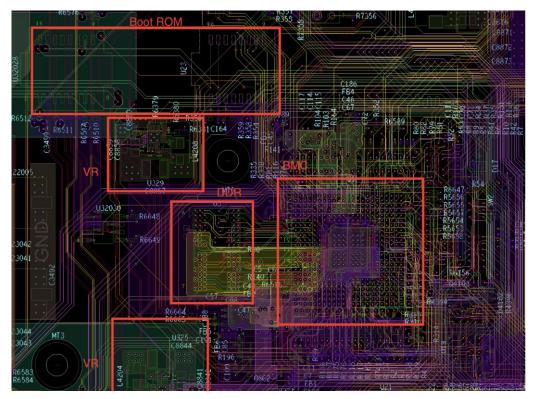


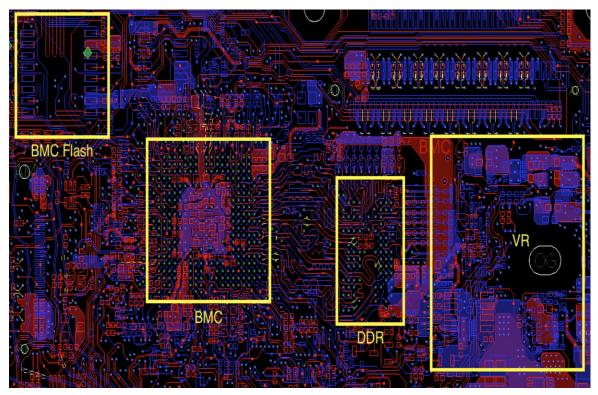
RunBMC The Hardware Interface for BMC **Rajeev Sharma** Director of Software and Data Center Solutions

Consume. Collaborate. Contribute.

Overview

 "RunBMC specification defines the interface between the Baseboard Management Controller (BMC) subsystem and OCP hardware platforms, such as network or compute motherboards."

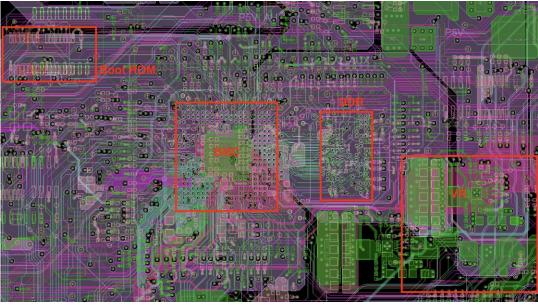



Platform Analysis

2018-2019: In-depth analysis of currently available OCP server platforms to compare **BMC** implementations

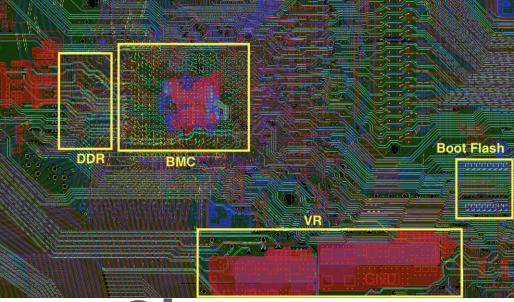
• Wedge (100G switch)

- Standard DDR3 layout, redesigned
- Unique voltage regulation for BMC
- Boot ROM reused
- USASUSG.NU/fasc BM. Construorek



Tioga Pass

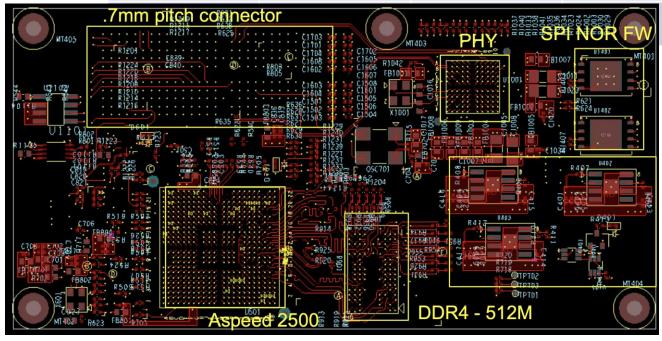
- Standard DDR4 chip, custom layout
- Unique voltage regulation for BMC
- Placement requirement for Flash (may be a crowded design)
- Routing RMII to Intel I210 (not shown)



Platform Analysis....Cont'd

Zaius

- DDR4 layout effort
- Unique voltage regulation for BMC
- RGMII to PHY (for dedicated BMC connection)


Olympus

- DDR3 layout effort
- Same design as Wedge with minimal changes
- RGMII to PHY (for dedicated BMC connection)

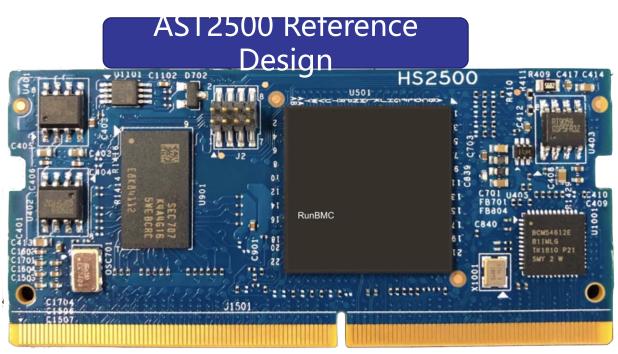
prototype

	GPIO (Resets etc)	IRQ or Error	Total (GPIO/IR Q/others)	I2C (busses)	UART
Tioga Pass	58	32	103	13	3
Zaius	71	20	98	15	1

RunBMC 2018 Prototype

2

• 300 Pins


10

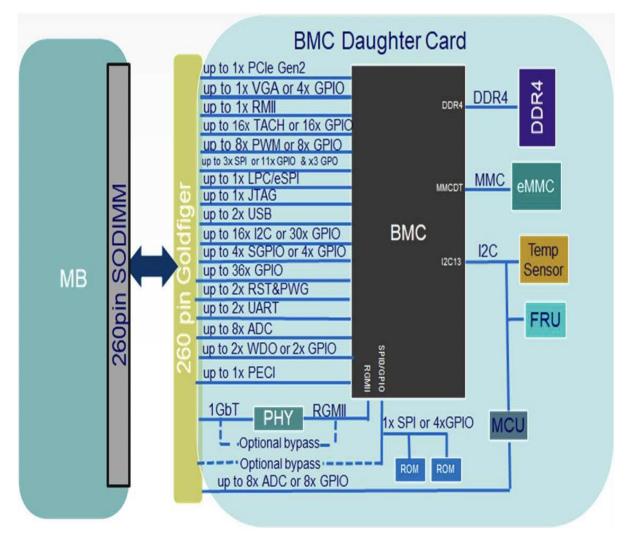
- Board to Board Connector
- Specification ??

Fast Forward to 2019

- RunBMC specification & more collaboration
- More reference boards & more prototypes

- **SOC**: ASPEED AST2500 SOC
 - ARM11 32-bit, 800Mhz
- **SPI**: 2x 32MB
- **DDR4**: 512MB
- **PHY**: 1GbT, BCM54612e

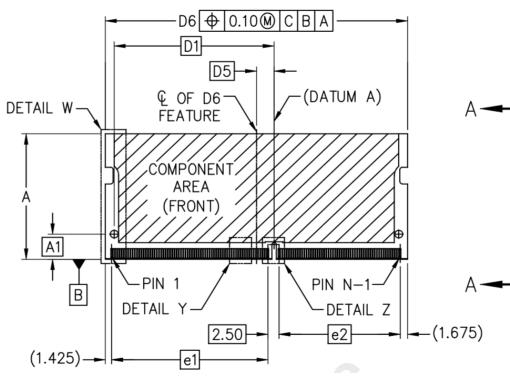
Consume. Collaborate. Contribute.


- **SOC**: Nuvoton Poleg SOC
 - Dual Cortex A9 32-bit, 800Mhz
- **SPI**: 2x 64MB
- **eMCC**: 8GB or None (Two SKUs)
- **DDR4**: 1GB
- PHY: 1GbT

800Mhz KUs)

High Level Spec

Overview					
Overview	RunBMC specification defines the interface between the Baseboard Management Controller(BMC) subsystem and OCP hardware platforms				
Connector and Form Factor					
Connector/ FF	260pin DDR4 SO-DIMM Connector. MO- 310C JEDEC registration in two different heights. Standard (32mm) and Large (50mm) allowed. Right Angle and Vertical Supported				
I/O Connectivity					
I/O	1x PCIe Gen2, 1x VGA, 1xRMII, 16x TACH, 8x PWM, 3x SPI, 1x LPC/ESPI, 1x JTAG, 2x USB, 16x I2C, 4x SGPIO, 36x GPIO, 2x RST/PWRGD, 2x UART, 8x ADC, 2x WDO, 1x PECI, 1GbT/RGMII, 8x ADC				
Flexible Functionality					
Flexible	Dual Functions for majority of the I/O is supported via multiplexing. Provides system flexibility				



Mechanical Form Factor

Connector

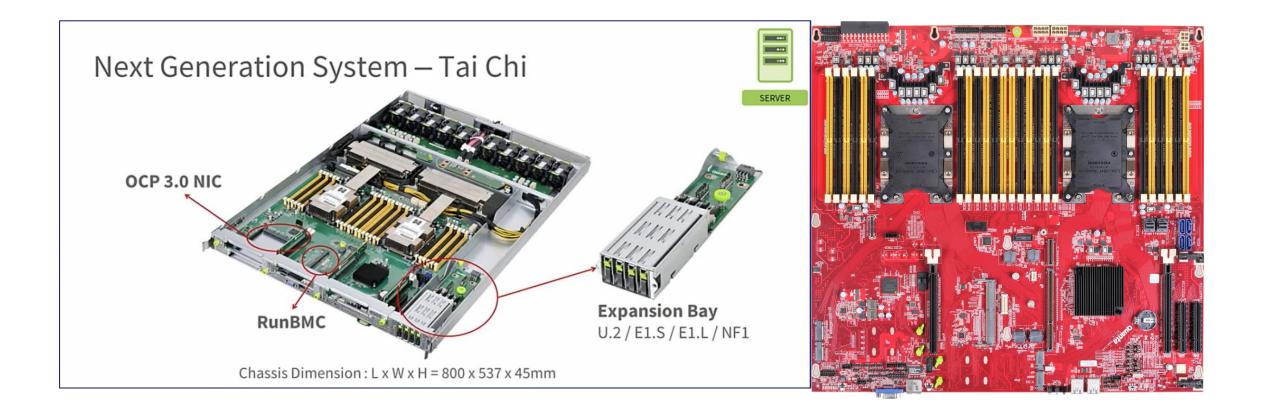
- 260 Pins (from 300 Pins) DDR4
 SODIMM, .50mm Pitch DIMM
 Registration
- Form factor, defined by MO-310C
- Exception is <u>height</u> and component keepout

Card Types	"A" height denoted in Figure below
Standard	32mm
Large	50mm

Connector Overview

Function	Signal Count for Interface	Number of Interfaces	Number of used pins	Total Signals
Power 3.3V			5	5
VDD RGMII REF			1	1
LPC 3.3v or ESPI 1.8v			1	1
Power 12 V			1	1
Ground			38	38
ADC	1	8	8	8
GPI/ADC	1	8	8	8
PCle	7	1	7	7
RGMII/1GT PHY	14	1	14	14
VGA / GPIOs	7	1	7	7
RMII/NC-SI	10	1	10	10
Master JTAG/GPIO	6	1	6	6
USB host	4	1	4	4
USB device	3	1	3	3
SPI1: SPI for host - quad capable	7	1	7	7
SPI2: SPI for host	5	1	5	5
FWSPI: SPI for Boot - quad capable	7	1	7	7
SYSSPI: System SPI	4	1	4	4
LPC/eSPI	8	1	8	8
I2C / GPIOs	2	12	24	24
GPIOs / I2C	2	3	6	6
12C	2	1	2	2
UARTs (TxD, RxD)	2	4	8	8
CONSOLE (Tx, Rx)	2	1	2	2
PWM	1	8	8	8
Tacho/GPIOs	1	16	16	16
PECI	2	1	2	2
GPIOs	1	37	37	37
GPIO/GPIO Expanders (Serial GPIO)	4	1	4	4
Reset and Power Good	1	2	2	2
Watchdogs/GPIO	1	2	2	2
(BOOT IND# / GPIO	1	1	1	1
RESERVED/KLUDGE	1	2	2	2

Benefits


Improved Security

- Hardened modular BMC acts as Root of Trust. Design is more stable, slower cadence cycle then server
- Physically easier to control fabrication
- Supply Chain
 - Pick your own BMC to fit server needs
- Manageability
 - Managing the platform code
 - Consistent interfaces drive consistent code
- Agile
 - Move fast to market Don't redesign your BMC

Big Thanks to..

• Hyve, QCT, Nuvoton, Microsoft, Google, Facebook, Aspeed & Twitter

Next Steps

- BMC Standardization
 - Specification for BMC server connections
 - A firmware stack that would comply to a standard, e.g. a "X PWM goes to X Fan" so that the system is intelligently "wired" and easier to control in terms of consistency.

Consume, Collaborate, Contribute.

Roadmap / Next Steps

AST2600 Reference Module

- Aspeed AST2600 is next gen SoC for upcoming server platforms
- We will design from the specification to create a reference module based on this SoC
- High Level: AST2600, 2 GB of DDR4 RAM, 1 GB of SPI NOR Serial Flash, 1 Gbps PHY on-board, pin compatible module that can replace any RunBMC AST2500 or RunBMC Poleg module (drop-in)

Consume, Collaborate, Contribute.

Thanks!

Consume. Collaborate. Contribute.

