Autonomous Drive Regeneration
Challenges, Opportunities & Best Practices
Autonomous Drive Regeneration

Tong Stone, Product Manager
Seagate Technology
Increasing storage capacity requires more components inside storage devices, HDDs or SSDs alike.

OPEN POSSIBILITIES.
What Happens with More Components?

Every head represents a smaller portion of drive capacity

More heads increase probability that at least one head encounters challenges (everything else equal)

Number of Heads: \(N \)

\[
\text{Prob.\{Single Head Issue\}} = p \\
\text{Prob.\{Single Head Healthy\}} = 1 - p \\
\text{Prob.\{All Heads Are Healthy\}} = (1 - p)^N
\]

With more heads, if the entire device is treated as a failure, due to a single head issue:
not only would it occur at a higher rate
but also discard more remaining capacity

OPEN POSSIBILITIES.
What Happens to Device Failures?

Swapped
Crushed

Hold Your Horses!

70% of datacenter failures are caused by human errors per Uptime Institute. Crushed HDDs is a significant portion of global e-waste per International Solid Waste Association.

OPEN POSSIBILITIES.
Technical Solution to Assist with Deployment Robustness

Exos CORVAULT finds a way to minimize human intervention and reduce e-waste

Self-Healing
Autonomous Drive Regeneration (ADR)

Samsung SSDs implemented Fail-in-Place to address similar issues
CORVAULT Implementation of Autonomous Drive Regeneration

Reducing e-waste, increasing Sustainability

1. Drive alerts controller of issues
2. Controller offloads data to other drives and removes drive from logical volume
3. Drive & controller diagnose incidents and regenerate drive
4. Volume is rebalanced with renewed drive

Maximize Sustainability
CORVAULT self-healing capability (ADR) enable drives to continue functioning in-system when other systems require HDD return and replacement

OPEN POSSIBILITIES.
How Drives Support ADR?

Feature Set in **T10 & T13** Standards
- **Storage Element Depopulation**
- Collaboration of all major storage device suppliers

Command Set
- **REMOVE ELEMENT AND TRUNCATE**
- **RESTORE ELEMENTS AND REBUILD**

OPEN POSSIBILITIES.
Sustainability: A Clear Industry Trend

aws Sustainability in the Cloud

DELL Technologies Sustainability Lifecycle

FACEBOOK Building and Operating Sustainable Data Centers

Google Once is Never Enough

HP Enterprise Upcycling for the Bottom Line

Microsoft Circular Centers to Help Achieve Zero Waste

INEMI Value Recovery Per HDD Life Cycle

OPEN POSSIBILITIES.
TCO Benefits

Direct TCO benefits can be achieved with ADR
- TCO modeling on a 100EB system in two different modus operandi for two boundary conditions
 - On-site staff swapping drives ASAP
 - Unmanned system with drives kept in slots permanently

YMWV – TCO modeling requires numerous assumptions specific to systems

Key Message – TCO savings are achievable with ADR
A Snapshot of Field Returns

Among drives with true issues:

56% could be good ADR candidates

- No Issues with drive (no ADR necessary)
- Minor issues with single head (> 70% ADR success)
- Single head errors with mild signs on second head (20-70% ADR success)
- Single head severe errors with minor issues on second or more heads, or drive DNR (< 20% ADR success)
- Hard errors on multiple heads, or hardware issues (< 5% ADR success)
Interested to Implement ADR?

- `--showPhysicalElementStatus` to inquire drive for health status on each element (head)

- `--removePhysicalElement x` to depopulate element x (head x)

- `--repopulateElements` to repopulate all elements (heads) with best attempt

We Are Here to Help!

Open Possibilities.
A Glimpse of Future Directions

Recording industry has been well aligned to support Storage Element Depopulation

Efforts are being made to ease implementation in storage systems
Can we expedite the process?

• Make background format optional
 – Handshake with hosts

Can we further simplify the process?
• Maintain data validity on heads not depopulated
 – How much would this help you?
Call to Action

- Treating a drive as failure due to single head issues has become less prudent and more costly in recent product generations
- Autonomous Drive Regeneration, supported by Storage Element Depopulation feature, enables recovery from issues associated with single heads (majority of drive returns) to allow continued usage
- By avoiding unnecessary swaps, benefits from ADR include less human intervention, reduced e-waste and direct reduction of TCO
- We promote wide adoption of Autonomous Drive Regeneration
- This is the time to let the industry know how you need the Storage Element Depopulation feature to be further enhanced
Open Discussion